InstructGraph: Boosting Large Language Models via Graph-centric
Instruction Tuning and Preference Alignment
- URL: http://arxiv.org/abs/2402.08785v1
- Date: Tue, 13 Feb 2024 20:47:17 GMT
- Title: InstructGraph: Boosting Large Language Models via Graph-centric
Instruction Tuning and Preference Alignment
- Authors: Jianing Wang, Junda Wu, Yupeng Hou, Yao Liu, Ming Gao, Julian McAuley
- Abstract summary: InstructGraph is a framework that empowers large language models with the abilities of graph reasoning and generation.
We show that InstructGraph can achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13% and 38%, respectively.
- Score: 30.136514352238795
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Do current large language models (LLMs) better solve graph reasoning and
generation tasks with parameter updates? In this paper, we propose
InstructGraph, a framework that empowers LLMs with the abilities of graph
reasoning and generation by instruction tuning and preference alignment.
Specifically, we first propose a structured format verbalizer to unify all
graph data into a universal code-like format, which can simply represent the
graph without any external graph-specific encoders. Furthermore, a graph
instruction tuning stage is introduced to guide LLMs in solving graph reasoning
and generation tasks. Finally, we identify potential hallucination problems in
graph tasks and sample negative instances for preference alignment, the target
of which is to enhance the output's reliability of the model. Extensive
experiments across multiple graph-centric tasks exhibit that InstructGraph can
achieve the best performance and outperform GPT-4 and LLaMA2 by more than 13\%
and 38\%, respectively.
Related papers
- Enhance Graph Alignment for Large Language Models [33.96082485852042]
Graph-to-token approaches are popular in enabling Large Language Models to process graph information.
Existing methods have a misalignment between self-supervised tasks and supervised downstream tasks.
We propose Graph Alignment Large Language Models (GALLM) to benefit from aligned task templates.
arXiv Detail & Related papers (2024-10-15T07:50:34Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
We introduce ProGraph, a benchmark for large language models (LLMs) to process graphs.
Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.
We propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries.
arXiv Detail & Related papers (2024-09-29T11:38:45Z) - Parameter-Efficient Tuning Large Language Models for Graph Representation Learning [62.26278815157628]
We introduce Graph-aware.
Efficient Fine-Tuning - GPEFT, a novel approach for efficient graph representation learning.
We use a graph neural network (GNN) to encode structural information from neighboring nodes into a graph prompt.
We validate our approach through comprehensive experiments conducted on 8 different text-rich graphs, observing an average improvement of 2% in hit@1 and Mean Reciprocal Rank (MRR) in link prediction evaluations.
arXiv Detail & Related papers (2024-04-28T18:36:59Z) - GraphInstruct: Empowering Large Language Models with Graph Understanding and Reasoning Capability [28.713449421717193]
We evaluate and enhance the graph understanding abilities of large language models (LLMs)
In this paper, we propose a benchmark named GraphInstruct, which includes 21 classical graph reasoning tasks.
We construct GraphLM through efficient instruction-tuning, which shows prominent graph understanding capability.
arXiv Detail & Related papers (2024-03-07T13:36:08Z) - MuseGraph: Graph-oriented Instruction Tuning of Large Language Models
for Generic Graph Mining [41.19687587548107]
Graph Neural Networks (GNNs) need to be re-trained every time when applied to different graph tasks and datasets.
We propose a novel framework MuseGraph, which seamlessly integrates the strengths of GNNs and Large Language Models (LLMs)
Our experimental results demonstrate significant improvements in different graph tasks.
arXiv Detail & Related papers (2024-03-02T09:27:32Z) - LLaGA: Large Language and Graph Assistant [73.71990472543027]
Large Language and Graph Assistant (LLaGA) is an innovative model to handle the complexities of graph-structured data.
LLaGA excels in versatility, generalizability and interpretability, allowing it to perform consistently well across different datasets and tasks.
Our experiments show that LLaGA delivers outstanding performance across four datasets and three tasks using one single model.
arXiv Detail & Related papers (2024-02-13T02:03:26Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - GraphGPT: Graph Instruction Tuning for Large Language Models [27.036935149004726]
Graph Neural Networks (GNNs) have evolved to understand graph structures.
To enhance robustness, self-supervised learning (SSL) has become a vital tool for data augmentation.
Our research tackles this by advancing graph model generalization in zero-shot learning environments.
arXiv Detail & Related papers (2023-10-19T06:17:46Z) - Graph-ToolFormer: To Empower LLMs with Graph Reasoning Ability via
Prompt Augmented by ChatGPT [10.879701971582502]
We aim to develop a large language model (LLM) with the reasoning ability on complex graph data.
Inspired by the latest ChatGPT and Toolformer models, we propose the Graph-ToolFormer framework to teach LLMs themselves with prompts augmented by ChatGPT to use external graph reasoning API tools.
arXiv Detail & Related papers (2023-04-10T05:25:54Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
We introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming.
This mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales.
We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.
arXiv Detail & Related papers (2021-11-20T22:45:53Z) - Graph Contrastive Learning Automated [94.41860307845812]
Graph contrastive learning (GraphCL) has emerged with promising representation learning performance.
The effectiveness of GraphCL hinges on ad-hoc data augmentations, which have to be manually picked per dataset.
This paper proposes a unified bi-level optimization framework to automatically, adaptively and dynamically select data augmentations when performing GraphCL on specific graph data.
arXiv Detail & Related papers (2021-06-10T16:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.