Ever-Evolving Memory by Blending and Refining the Past
- URL: http://arxiv.org/abs/2403.04787v2
- Date: Sun, 7 Apr 2024 04:31:30 GMT
- Title: Ever-Evolving Memory by Blending and Refining the Past
- Authors: Seo Hyun Kim, Keummin Ka, Yohan Jo, Seung-won Hwang, Dongha Lee, Jinyoung Yeo,
- Abstract summary: CREEM is a novel memory system for long-term conversation.
It seamlessly connects past and present information, while also possessing the ability to forget obstructive information.
- Score: 30.63352929849842
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For a human-like chatbot, constructing a long-term memory is crucial. However, current large language models often lack this capability, leading to instances of missing important user information or redundantly asking for the same information, thereby diminishing conversation quality. To effectively construct memory, it is crucial to seamlessly connect past and present information, while also possessing the ability to forget obstructive information. To address these challenges, we propose CREEM, a novel memory system for long-term conversation. Improving upon existing approaches that construct memory based solely on current sessions, CREEM blends past memories during memory formation. Additionally, we introduce a refining process to handle redundant or outdated information. Unlike traditional paradigms, we view responding and memory construction as inseparable tasks. The blending process, which creates new memories, also serves as a reasoning step for response generation by informing the connection between past and present. Through evaluation, we demonstrate that CREEM enhances both memory and response qualities in multi-session personalized dialogues.
Related papers
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - Compress to Impress: Unleashing the Potential of Compressive Memory in Real-World Long-Term Conversations [39.05338079159942]
This study introduces a novel framework, COmpressive Memory-Enhanced Dialogue sYstems (COMEDY), which eschews traditional retrieval modules and memory databases.
Central to COMEDY is the concept of compressive memory, which intergrates session-specific summaries, user-bot dynamics, and past events into a concise memory format.
arXiv Detail & Related papers (2024-02-19T09:19:50Z) - Personalized Large Language Model Assistant with Evolving Conditional Memory [15.780762727225122]
We present a plug-and-play framework that could facilitate personalized large language model assistants with evolving conditional memory.
The personalized assistant focuses on intelligently preserving the knowledge and experience from the history dialogue with the user.
arXiv Detail & Related papers (2023-12-22T02:39:15Z) - Recursively Summarizing Enables Long-Term Dialogue Memory in Large
Language Models [75.98775135321355]
Given a long conversation, large language models (LLMs) fail to recall past information and tend to generate inconsistent responses.
We propose to generate summaries/ memory using large language models (LLMs) to enhance long-term memory ability.
arXiv Detail & Related papers (2023-08-29T04:59:53Z) - MemoryBank: Enhancing Large Language Models with Long-Term Memory [7.654404043517219]
We propose MemoryBank, a novel memory mechanism tailored for Large Language Models.
MemoryBank enables the models to summon relevant memories, continually evolve through continuous memory updates, comprehend, and adapt to a user personality by synthesizing information from past interactions.
arXiv Detail & Related papers (2023-05-17T14:40:29Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - Keep Me Updated! Memory Management in Long-term Conversations [14.587940208778843]
We present a novel task and a dataset of memory management in long-term conversations.
We propose a new mechanism of memory management that eliminates invalidated or redundant information.
Experimental results show that our approach outperforms the baselines in terms of engagingness and humanness.
arXiv Detail & Related papers (2022-10-17T05:06:38Z) - LaMemo: Language Modeling with Look-Ahead Memory [50.6248714811912]
We propose Look-Ahead Memory (LaMemo) that enhances the recurrence memory by incrementally attending to the right-side tokens.
LaMemo embraces bi-directional attention and segment recurrence with an additional overhead only linearly proportional to the memory length.
Experiments on widely used language modeling benchmarks demonstrate its superiority over the baselines equipped with different types of memory.
arXiv Detail & Related papers (2022-04-15T06:11:25Z) - Learning to Rehearse in Long Sequence Memorization [107.14601197043308]
Existing reasoning tasks often have an important assumption that the input contents can be always accessed while reasoning.
Memory augmented neural networks introduce a human-like write-read memory to compress and memorize the long input sequence in one pass.
But they have two serious drawbacks: 1) they continually update the memory from current information and inevitably forget the early contents; 2) they do not distinguish what information is important and treat all contents equally.
We propose the Rehearsal Memory to enhance long-sequence memorization by self-supervised rehearsal with a history sampler.
arXiv Detail & Related papers (2021-06-02T11:58:30Z) - Not All Memories are Created Equal: Learning to Forget by Expiring [49.053569908417636]
We propose Expire-Span, a method that learns to retain the most important information and expire the irrelevant information.
This forgetting of memories enables Transformers to scale to attend over tens of thousands of previous timesteps efficiently.
We show that Expire-Span can scale to memories that are tens of thousands in size, setting a new state of the art on incredibly long context tasks.
arXiv Detail & Related papers (2021-05-13T20:50:13Z) - Self-Attentive Associative Memory [69.40038844695917]
We propose to separate the storage of individual experiences (item memory) and their occurring relationships (relational memory)
We achieve competitive results with our proposed two-memory model in a diversity of machine learning tasks.
arXiv Detail & Related papers (2020-02-10T03:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.