Not All Memories are Created Equal: Learning to Forget by Expiring
- URL: http://arxiv.org/abs/2105.06548v1
- Date: Thu, 13 May 2021 20:50:13 GMT
- Title: Not All Memories are Created Equal: Learning to Forget by Expiring
- Authors: Sainbayar Sukhbaatar, Da Ju, Spencer Poff, Stephen Roller, Arthur
Szlam, Jason Weston, Angela Fan
- Abstract summary: We propose Expire-Span, a method that learns to retain the most important information and expire the irrelevant information.
This forgetting of memories enables Transformers to scale to attend over tens of thousands of previous timesteps efficiently.
We show that Expire-Span can scale to memories that are tens of thousands in size, setting a new state of the art on incredibly long context tasks.
- Score: 49.053569908417636
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attention mechanisms have shown promising results in sequence modeling tasks
that require long-term memory. Recent work investigated mechanisms to reduce
the computational cost of preserving and storing memories. However, not all
content in the past is equally important to remember. We propose Expire-Span, a
method that learns to retain the most important information and expire the
irrelevant information. This forgetting of memories enables Transformers to
scale to attend over tens of thousands of previous timesteps efficiently, as
not all states from previous timesteps are preserved. We demonstrate that
Expire-Span can help models identify and retain critical information and show
it can achieve strong performance on reinforcement learning tasks specifically
designed to challenge this functionality. Next, we show that Expire-Span can
scale to memories that are tens of thousands in size, setting a new state of
the art on incredibly long context tasks such as character-level language
modeling and a frame-by-frame moving objects task. Finally, we analyze the
efficiency of Expire-Span compared to existing approaches and demonstrate that
it trains faster and uses less memory.
Related papers
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - Ever-Evolving Memory by Blending and Refining the Past [30.63352929849842]
CREEM is a novel memory system for long-term conversation.
It seamlessly connects past and present information, while also possessing the ability to forget obstructive information.
arXiv Detail & Related papers (2024-03-03T08:12:59Z) - Think Before You Act: Decision Transformers with Working Memory [44.18926449252084]
Decision Transformer-based decision-making agents have shown the ability to generalize across multiple tasks.
We argue that this inefficiency stems from the forgetting phenomenon, in which a model memorizes its behaviors in parameters throughout training.
We propose a working memory module to store, blend, and retrieve information for different downstream tasks.
arXiv Detail & Related papers (2023-05-24T01:20:22Z) - Saliency-Augmented Memory Completion for Continual Learning [8.243137410556495]
How to forget is a problem continual learning must address.
Our paper proposes a new saliency-augmented memory completion framework for continual learning.
arXiv Detail & Related papers (2022-12-26T18:06:39Z) - LaMemo: Language Modeling with Look-Ahead Memory [50.6248714811912]
We propose Look-Ahead Memory (LaMemo) that enhances the recurrence memory by incrementally attending to the right-side tokens.
LaMemo embraces bi-directional attention and segment recurrence with an additional overhead only linearly proportional to the memory length.
Experiments on widely used language modeling benchmarks demonstrate its superiority over the baselines equipped with different types of memory.
arXiv Detail & Related papers (2022-04-15T06:11:25Z) - ABC: Attention with Bounded-memory Control [67.40631793251997]
We show that bounded-memory control (ABC) can be subsumed into one abstraction, attention with bounded-memory control (ABC)
ABC reveals new, unexplored possibilities. First, it connects several efficient attention variants that would otherwise seem apart.
Last, we present a new instance of ABC, which draws inspiration from existing ABC approaches, but replaces their memory-organizing functions with a learned, contextualized one.
arXiv Detail & Related papers (2021-10-06T03:53:25Z) - Learning to Rehearse in Long Sequence Memorization [107.14601197043308]
Existing reasoning tasks often have an important assumption that the input contents can be always accessed while reasoning.
Memory augmented neural networks introduce a human-like write-read memory to compress and memorize the long input sequence in one pass.
But they have two serious drawbacks: 1) they continually update the memory from current information and inevitably forget the early contents; 2) they do not distinguish what information is important and treat all contents equally.
We propose the Rehearsal Memory to enhance long-sequence memorization by self-supervised rehearsal with a history sampler.
arXiv Detail & Related papers (2021-06-02T11:58:30Z) - Towards mental time travel: a hierarchical memory for reinforcement
learning agents [9.808027857786781]
Reinforcement learning agents often forget details of the past, especially after delays or distractor tasks.
We propose a Hierarchical Transformer Memory (HTM) which helps agents to remember the past in detail.
Agents with HTM can extrapolate to task sequences an order of magnitude longer than they were trained on, and can even generalize zero-shot from a meta-learning setting to maintaining knowledge across episodes.
arXiv Detail & Related papers (2021-05-28T18:12:28Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.