論文の概要: Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs
- arxiv url: http://arxiv.org/abs/2403.04801v2
- Date: Sun, 31 Mar 2024 04:33:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-02 13:54:43.849532
- Title: Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs
- Title(参考訳): Vicunaに対するAlpaca: LLMを用いたLLMの記憶の解明
- Authors: Aly M. Kassem, Omar Mahmoud, Niloofar Mireshghallah, Hyunwoo Kim, Yulia Tsvetkov, Yejin Choi, Sherif Saad, Santu Rana,
- Abstract要約: 本稿では,攻撃者によるLSMエージェントを用いたブラックボックスプロンプト最適化手法を提案する。
ベースラインプレフィックス・サフィックス測定と比較すると,命令ベースのプロンプトは,トレーニングデータと23.7%のオーバラップで出力を生成する。
以上の結果から,命令調整モデルでは,ベースモデルと同等に事前学習データを公開することが可能であり,他のLSMが提案する命令を用いることで,新たな自動攻撃の道を開くことが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 61.04246774006429
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent, compared to what is revealed by prompting the target model with the training data directly, which is the dominant approach of quantifying memorization in LLMs. We use an iterative rejection-sampling optimization process to find instruction-based prompts with two main characteristics: (1) minimal overlap with the training data to avoid presenting the solution directly to the model, and (2) maximal overlap between the victim model's output and the training data, aiming to induce the victim to spit out training data. We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements. Our findings show that (1) instruction-tuned models can expose pre-training data as much as their base-models, if not more so, (2) contexts other than the original training data can lead to leakage, and (3) using instructions proposed by other LLMs can open a new avenue of automated attacks that we should further study and explore. The code can be found at https://github.com/Alymostafa/Instruction_based_attack .
- Abstract(参考訳): 本稿では,攻撃者によるLSMエージェントを用いたブラックボックスプロンプト最適化手法を提案する。この手法は,LSMのメモリ化を定量化する主要なアプローチであるトレーニングデータを用いて,ターゲットモデルを直接的に誘導することによって明らかにされるものと比較して,被害者エージェントのメモリ化のレベルを高くするものである。
本研究では,(1)モデルに直接ソリューションを提示するのを避けるため,トレーニングデータとの重複を最小に抑えること,(2) 被害者モデルの出力とトレーニングデータとの重複を最大化し,被害者にトレーニングデータを吐き出すよう誘導すること,という2つの特徴を持つ命令ベースのプロンプトを反復的拒否サンプリング最適化プロセスを用いて探索する。
ベースラインプレフィックス・サフィックス測定と比較すると,命令ベースのプロンプトは,トレーニングデータと23.7%のオーバラップで出力を生成する。
その結果,(1)訓練済みのモデルがベースモデルと同等に訓練済みデータを公開でき,(2)トレーニングデータ以外のコンテキストが漏洩する可能性があること,(3)他のLSMが提案した命令を用いることで,さらなる研究と探索を行うべき新たな自動攻撃経路が開けること,などが判明した。
コードはhttps://github.com/Alymostafa/Instruction_based_ attack で見ることができる。
関連論文リスト
- What Do Learning Dynamics Reveal About Generalization in LLM Reasoning? [83.83230167222852]
モデルの一般化動作は,事前記憶列車の精度と呼ばれるトレーニング指標によって効果的に特徴づけられることがわかった。
モデルの学習行動と一般化を結びつけることで、トレーニング戦略に目標とする改善を導くことができる。
論文 参考訳(メタデータ) (2024-11-12T09:52:40Z) - Fine-tuned Large Language Models (LLMs): Improved Prompt Injection Attacks Detection [6.269725911814401]
大きな言語モデル(LLM)は、幅広い言語ベースのタスクに対処する能力が大きく進歩しているため、人気ツールになりつつある。
しかし、LSMのアプリケーションはインジェクション攻撃に対して非常に脆弱であり、致命的な問題を引き起こす。
このプロジェクトでは,インジェクションのインジェクション攻撃に関連するセキュリティ脆弱性について検討する。
論文 参考訳(メタデータ) (2024-10-28T00:36:21Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
大規模言語モデル(LLM)は、多種多様な高品質なタスク特化データのトレーニングの恩恵を受けている。
本稿では,効果的なトレーニングサンプルを自動生成する新しい手法であるReverseGenを提案する。
論文 参考訳(メタデータ) (2024-10-22T06:43:28Z) - Accelerating Large Language Model Pretraining via LFR Pedagogy: Learn, Focus, and Review [50.78587571704713]
大規模言語モデル(LLM)の事前トレーニングは伝統的に、Webスケールデータセットからランダムにサンプリングされたデータブロックの自己回帰言語モデリングに依存している。
我々は、空間的反復のような人間の学習技術からインスピレーションを得て、LLMのランダムなデータサンプリングが、データを忘れがちな高いトレーニングコストと低品質モデルをもたらすという仮説を立てる。
ウェブスケール情報を長期記憶に効果的にコミットするために,LFR(Learn, Focus, and Review)ペタゴギーを提案する。
論文 参考訳(メタデータ) (2024-09-10T00:59:18Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。
LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。
GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (2024-03-22T08:57:07Z) - Pandora's White-Box: Precise Training Data Detection and Extraction in Large Language Models [4.081098869497239]
我々は,大規模言語モデル(LLM)に対する最先端のプライバシ攻撃を開発する。
事前訓練されたLLMに対する新たなメンバーシップ推論攻撃(MIA)は、ベースライン攻撃の数百倍の精度で実行される。
微調整では, ベースモデルと微調整モデルとの損失率に基づく単純な攻撃により, ほぼ完全なMIA性能が得られることがわかった。
論文 参考訳(メタデータ) (2024-02-26T20:41:50Z) - How to Train Data-Efficient LLMs [56.41105687693619]
事前学習言語モデル(LLM)に対するデータ効率のアプローチについて検討する。
Ask-LLMと密度サンプリングがそれぞれのカテゴリで最適であることがわかった。
何百もの評価タスクと事前学習作業を含む19個のサンプルを比較したところ,Ask-LLMと密度がそれぞれのカテゴリで最適な方法であることが判明した。
論文 参考訳(メタデータ) (2024-02-15T02:27:57Z) - Practical Membership Inference Attacks against Fine-tuned Large Language Models via Self-prompt Calibration [32.15773300068426]
メンバーシップ推論攻撃は、対象のデータレコードがモデルトレーニングに使用されたかどうかを推測することを目的としている。
自己校正確率変動(SPV-MIA)に基づくメンバーシップ推論攻撃を提案する。
論文 参考訳(メタデータ) (2023-11-10T13:55:05Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。