Beyond Multiple Instance Learning: Full Resolution All-In-Memory End-To-End Pathology Slide Modeling
- URL: http://arxiv.org/abs/2403.04865v2
- Date: Wed, 22 May 2024 20:30:01 GMT
- Title: Beyond Multiple Instance Learning: Full Resolution All-In-Memory End-To-End Pathology Slide Modeling
- Authors: Gabriele Campanella, Eugene Fluder, Jennifer Zeng, Chad Vanderbilt, Thomas J. Fuchs,
- Abstract summary: We propose a novel approach to jointly train both a tile encoder and a slide-aggregator fully in memory and end-to-end at high-resolution.
While more computationally expensive, detailed quantitative validation shows promise for large-scale pre-training and fine-tuning of pathology foundation models.
- Score: 1.063200750366449
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Artificial Intelligence (AI) has great potential to improve health outcomes by training systems on vast digitized clinical datasets. Computational Pathology, with its massive amounts of microscopy image data and impact on diagnostics and biomarkers, is at the forefront of this development. Gigapixel pathology slides pose a unique challenge due to their enormous size and are usually divided into tens of thousands of smaller tiles for analysis. This results in a discontinuity in the machine learning process by separating the training of tile-level encoders from slide-level aggregators and the need to adopt weakly supervised learning strategies. Training models from entire pathology slides end-to-end has been largely unexplored due to its computational challenges. To overcome this problem, we propose a novel approach to jointly train both a tile encoder and a slide-aggregator fully in memory and end-to-end at high-resolution, bridging the gap between input and slide-level supervision. While more computationally expensive, detailed quantitative validation shows promise for large-scale pre-training and fine-tuning of pathology foundation models.
Related papers
- Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Improving Deep Learning-based Automatic Cranial Defect Reconstruction by Heavy Data Augmentation: From Image Registration to Latent Diffusion Models [0.2911706166691895]
The work is a considerable contribution to the field of artificial intelligence in the automatic modeling of personalized cranial implants.
We show that the use of heavy data augmentation significantly increases both the quantitative and qualitative outcomes.
We also show that the synthetically augmented network successfully reconstructs real clinical defects.
arXiv Detail & Related papers (2024-06-10T15:34:23Z) - Connecting the Dots: Graph Neural Network Powered Ensemble and
Classification of Medical Images [0.0]
Deep learning for medical imaging is limited due to the requirement for large amounts of training data.
We employ the Image Foresting Transform to optimally segment images into superpixels.
These superpixels are subsequently transformed into graph-structured data, enabling the proficient extraction of features and modeling of relationships.
arXiv Detail & Related papers (2023-11-13T13:20:54Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Demystifying Deep Learning Models for Retinal OCT Disease Classification
using Explainable AI [0.6117371161379209]
The adoption of various deep learning techniques is quite common as well as effective, and its statement is equally true when it comes to implementing it into the retina Optical Coherence Tomography sector.
These techniques have the black box characteristics that prevent the medical professionals to completely trust the results generated from them.
This paper proposes a self-developed CNN model which is comparatively smaller and simpler along with the use of Lime that introduces Explainable AI to the study.
arXiv Detail & Related papers (2021-11-06T13:54:07Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Federated Learning for Computational Pathology on Gigapixel Whole Slide
Images [4.035591045544291]
We introduce privacy-preserving federated learning for gigapixel whole slide images in computational pathology.
We evaluate our approach on two different diagnostic problems using thousands of histology whole slide images with only slide-level labels.
arXiv Detail & Related papers (2020-09-21T21:56:08Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.