論文の概要: Secure Information Embedding in Forensic 3D Fingerprinting
- arxiv url: http://arxiv.org/abs/2403.04918v5
- Date: Mon, 03 Feb 2025 00:14:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:02:56.225010
- Title: Secure Information Embedding in Forensic 3D Fingerprinting
- Title(参考訳): 法医学的3Dフィンガープリントにおける安全な情報埋め込み
- Authors: Canran Wang, Jinwen Wang, Mi Zhou, Vinh Pham, Senyue Hao, Chao Zhou, Ning Zhang, Netanel Raviv,
- Abstract要約: SIDEは3Dプリンティングに適した新しいフィンガープリントフレームワークである。
SIDEは、セキュアな情報埋め込みと抽出の両方を提供することで、3Dプリントの敵対的課題に対処する。
- 参考スコア(独自算出の注目度): 15.196378932114518
- License:
- Abstract: Printer fingerprinting techniques have long played a critical role in forensic applications, including the tracking of counterfeiters and the safeguarding of confidential information. The rise of 3D printing technology introduces significant risks to public safety, enabling individuals with internet access and consumer-grade 3D printers to produce untraceable firearms, counterfeit products, and more. This growing threat calls for a better mechanism to track the production of 3D-printed parts. Inspired by the success of fingerprinting on traditional 2D printers, we introduce SIDE (\textbf{S}ecure \textbf{I}nformation Embe\textbf{D}ding and \textbf{E}xtraction), a novel fingerprinting framework tailored for 3D printing. SIDE addresses the adversarial challenges of 3D print forensics by offering both secure information embedding and extraction. First, through novel coding-theoretic techniques, SIDE is both~\emph{break-resilient} and~\emph{loss-tolerant}, enabling fingerprint recovery even if the adversary breaks the print into fragments and conceals a portion of them. Second, SIDE further leverages Trusted Execution Environments (TEE) to secure the fingerprint embedding process.
- Abstract(参考訳): 指紋認証技術は、偽造者の追跡や機密情報の保護など、長い間、法医学的応用において重要な役割を担ってきた。
3Dプリンティング技術の台頭は、公共の安全に重大なリスクをもたらし、インターネットアクセスや消費者向けの3Dプリンタを持つ個人が追跡不能な銃器や偽造品などを作れるようにしている。
この増大する脅威は、3Dプリント部品の生産を追跡するためのより良いメカニズムを求めている。
SIDE(\textbf{S}ecure \textbf{I}nformation Embe\textbf{D}ding and \textbf{E}xtraction)は3Dプリンティングに適した新しいフィンガープリントフレームワークである。
SIDEは、安全な情報埋め込みと抽出の両方を提供することで、3Dプリントの法医学の敵対的課題に対処する。
まず、新しいコーディング理論の手法により、SIDE は~\emph{break-resilient} と~\emph{loss-tolerant} の両方であり、敵がプリントを断片化してその一部を隠すとしても指紋の回復を可能にする。
第二に、SIDEはさらにTrusted Execution Environments (TEE)を活用して指紋の埋め込みプロセスを確保する。
関連論文リスト
- Browser Fingerprint Detection and Anti-Tracking [0.0]
デジタル指紋は、一般ユーザーのプライバシーとセキュリティに重大な脅威をもたらす。
本稿では,デジタル指紋に対する現在の追跡防止手法の有効性について検討し,デジタル指紋に対して効果的に抵抗できるブラウザ拡張を設計する。
論文 参考訳(メタデータ) (2025-02-20T07:23:22Z) - Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
ブラウザのフィンガープリントは、クッキーのような従来の方法なしでオンラインでユーザーを特定し、追跡するテクニックとして成長している。
本稿では, 各種指紋認証技術について概説し, 収集データのエントロピーと特異性を解析する。
論文 参考訳(メタデータ) (2024-11-18T20:32:31Z) - Practitioner Paper: Decoding Intellectual Property: Acoustic and Magnetic Side-channel Attack on a 3D Printer [3.0832643041058607]
本研究は,3Dプリンタ上でサイドチャネル攻撃を行うことにより,G符号の再構築の実現可能性を示す。
グラディエントブースト決定木を用いたモデルの訓練により, 軸運動, ステッパ, ノズル, ロータ速度の予測精度が向上した。
実世界の試験において本モデルを効果的に展開し, 平均テンディエンシエラー(MTE)を4.47%, 平易なGコード設計で達成する。
論文 参考訳(メタデータ) (2024-11-16T21:05:25Z) - Contactless Fingerprint Recognition Using 3D Graph Matching [12.092701535950097]
既存の非接触指紋アルゴリズムは、非接触指紋を2Dプレーン指紋として扱う。
この認識アプローチは、非接触指紋と接触指紋のモダリティ差を考慮しない。
本稿では,接触指紋の3次元特徴を捉える新しい非接触指紋認識アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-13T12:39:57Z) - PrintListener: Uncovering the Vulnerability of Fingerprint Authentication via the Finger Friction Sound [23.149939556959772]
我々は、ミツバチを用いた自動指紋識別システム(AFIS)に対する新たなサイドチャネル攻撃を提案する。
PrintListenerの攻撃シナリオは広範で隠蔽されている。ユーザの指先摩擦音を記録するだけで、多数のソーシャルメディアプラットフォームを活用することで起動できる。
論文 参考訳(メタデータ) (2024-04-14T10:55:15Z) - Stop Stealing My Data: Sanitizing Stego Channels in 3D Printing Design Files [56.96539046813698]
ステガノグラフィーチャネルは、印刷されたモデルを変更することなく、追加のデータをSTLファイル内に埋め込むことができる。
本稿では,ステガノグラフィーチャネルが存在する可能性のある隠されたコンテンツを消去するアンフェニタイザーを設計し,評価することで,このセキュリティ上の脅威に対処する。
論文 参考訳(メタデータ) (2024-04-07T23:28:35Z) - RFDforFin: Robust Deep Forgery Detection for GAN-generated Fingerprint
Images [45.73061833269094]
本稿では,GAN生成画像の独自の隆起特性と生成アーティファクトを組み合わせた指紋画像に対する最初の深部偽造検出手法を提案する。
提案手法は,低複雑性で有効かつ堅牢である。
論文 参考訳(メタデータ) (2023-08-18T04:05:18Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
ソーシャルメディアからの指紋漏洩は 画像を匿名化したいという強い欲求を喚起します
指紋漏洩を保護するために、画像に知覚不能な摂動を加えることにより、敵攻撃が解決策として現れる。
この問題を解決するために,階層型パーセプティカルノイズ注入フレームワークであるFingerSafeを提案する。
論文 参考訳(メタデータ) (2022-08-23T02:20:46Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
中規模の偽指紋データベースを記述し、2つの異なる指紋認証システムを評価する。
光およびサーマルスイーピングセンサの結果が提供される。
論文 参考訳(メタデータ) (2022-07-11T12:22:52Z) - PrintsGAN: Synthetic Fingerprint Generator [39.804969475699345]
PrintsGANは、特定の指紋に対する複数の印象とともに、ユニークな指紋を生成することができる合成指紋生成装置である。
本研究では,指紋から一定の長さの埋め込みを抽出するために,深層ネットワークをトレーニングしたPrintsGANの有用性を示す。
論文 参考訳(メタデータ) (2022-01-10T22:25:10Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。