論文の概要: A Survey on Human-AI Collaboration with Large Foundation Models
- arxiv url: http://arxiv.org/abs/2403.04931v3
- Date: Tue, 02 Sep 2025 19:24:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-04 21:40:46.171167
- Title: A Survey on Human-AI Collaboration with Large Foundation Models
- Title(参考訳): 大規模基盤モデルによる人間とAIの連携に関する調査
- Authors: Vanshika Vats, Marzia Binta Nizam, Minghao Liu, Ziyuan Wang, Richard Ho, Mohnish Sai Prasad, Vincent Titterton, Sai Venkat Malreddy, Riya Aggarwal, Yanwen Xu, Lei Ding, Jay Mehta, Nathan Grinnell, Li Liu, Sijia Zhong, Devanathan Nallur Gandamani, Xinyi Tang, Rohan Ghosalkar, Celeste Shen, Rachel Shen, Nafisa Hussain, Kesav Ravichandran, James Davis,
- Abstract要約: HAI(Human-AI:Human-AI)コラボレーションは、問題解決と意思決定のプロセスを進める上で重要である。
LFM(Large Foundation Models)の出現は、前例のない機能を提供し、その可能性を大きく拡大した。
本稿では, LFMとHAIの重要統合を概観し, 可能性とリスクの両面に注目した。
- 参考スコア(独自算出の注目度): 11.837685062760132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As the capabilities of artificial intelligence (AI) continue to expand rapidly, Human-AI (HAI) Collaboration, combining human intellect and AI systems, has become pivotal for advancing problem-solving and decision-making processes. The advent of Large Foundation Models (LFMs) has greatly expanded its potential, offering unprecedented capabilities by leveraging vast amounts of data to understand and predict complex patterns. At the same time, realizing this potential responsibly requires addressing persistent challenges related to safety, fairness, and control. This paper reviews the crucial integration of LFMs with HAI, highlighting both opportunities and risks. We structure our analysis around four areas: human-guided model development, collaborative design principles, ethical and governance frameworks, and applications in high-stakes domains. Our review shows that successful HAI systems are not the automatic result of stronger models but the product of careful, human-centered design. By identifying key open challenges, this survey aims to give insight into current and future research that turns the raw power of LFMs into partnerships that are reliable, trustworthy, and beneficial to society.
- Abstract(参考訳): 人工知能(AI)の能力が急速に拡大するにつれ、ヒューマンAI(Human-AI)コラボレーションは、人間の知性とAIシステムを組み合わせることで、問題解決と意思決定のプロセスを進める上で重要なものとなっている。
LFM(Large Foundation Models)の出現は、その可能性を大幅に拡大し、複雑なパターンを理解し予測するために大量のデータを活用することで、前例のない機能を提供する。
同時に、この可能性を実現するには、安全性、公平性、制御に関する永続的な課題に対処する必要がある。
本稿では, LFMとHAIの重要統合を概観し, 可能性とリスクの両面に注目した。
人間の指導によるモデル開発、協調設計の原則、倫理とガバナンスのフレームワーク、そして高い領域のアプリケーションです。
我々のレビューでは、HAIシステムはより強力なモデルによる自動的な結果ではなく、注意深い人間中心の設計の産物であることが示されている。
この調査は、主要なオープン課題を特定することによって、LFMの原動力を信頼性、信頼性、社会に有益なパートナーシップに変える、現在および将来の研究に関する洞察を提供することを目的としている。
関連論文リスト
- Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities [117.49715661395294]
データ構造化は、複雑で非組織的なデータをよく構造化された形式に変換することで、有望な役割を果たす。
この調査では、グラフがAIエージェントにどのように権限を与えるかを、初めて体系的にレビューする。
論文 参考訳(メタデータ) (2025-06-22T12:59:12Z) - When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
我々は,人間とAIの知識伝達能力に関する概念的かつ実験的フレームワークである知識統合と伝達評価(KITE)を紹介する。
最初の大規模人間実験(N=118)を行い,その測定を行った。
2段階のセットアップでは、まずAIを使って問題解決戦略を思いつき、その後独立してソリューションを実装し、モデル説明が人間の理解に与える影響を分離します。
論文 参考訳(メタデータ) (2025-06-05T20:48:16Z) - The Value of Information in Human-AI Decision-making [23.353778024330165]
情報の価値を特徴付けるための意思決定理論の枠組みに貢献する。
本稿では、SHAPの説明に適応し、人間の補足情報を強調する新しい説明手法を提案する。
我々は,人間の意思決定を最も補完するAIモデルを特定するために,補完的情報の尺度が利用できることを示した。
論文 参考訳(メタデータ) (2025-02-10T04:50:42Z) - AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions [10.16399860867284]
人工知能(AI)技術は、人間の意思決定能力を増強することで戦術的操作を変革している。
本稿では,AI駆動型人間自律チーム(HAT)を変革的アプローチとして検討する。
我々はAI駆動型HATの重要なコンポーネントに対処する包括的フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-28T15:05:16Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
本稿では,AIを活用したデータ分析ツールの可能性について考察する。
我々は、大規模言語とマルチモーダルモデルの出現が、データ分析ワークフローの様々な段階を強化する新しい機会を提供する方法について検討する。
次に、直感的なインタラクションを促進し、ユーザ信頼を構築し、AI支援分析ワークフローを複数のアプリにわたって合理化するための、人間中心の設計原則を調べます。
論文 参考訳(メタデータ) (2024-09-27T06:31:03Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Mutual Theory of Mind in Human-AI Collaboration: An Empirical Study with LLM-driven AI Agents in a Real-time Shared Workspace Task [56.92961847155029]
心の理論(ToM)は、他人を理解する上で重要な能力として、人間の協調とコミュニケーションに大きな影響を及ぼす。
Mutual Theory of Mind (MToM) は、ToM能力を持つAIエージェントが人間と協力するときに発生する。
エージェントのToM能力はチームのパフォーマンスに大きな影響を与えず,エージェントの人間的理解を高めていることがわかった。
論文 参考訳(メタデータ) (2024-09-13T13:19:48Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
複雑なタスク解決のためのLarge Language Models(LLM)に基づくヒューマンエージェントコラボレーションの問題を紹介する。
Reinforcement Learning-based Human-Agent Collaboration method, ReHACを提案する。
このアプローチには、タスク解決プロセスにおける人間の介入の最も急進的な段階を決定するために設計されたポリシーモデルが含まれている。
論文 参考訳(メタデータ) (2024-02-20T11:03:36Z) - Artificial Intelligence for Operations Research: Revolutionizing the Operations Research Process [15.471884798655063]
人工知能(AI)技術の急速な進歩により、オペレーティングリサーチ(OR)を含む様々な分野に革命をもたらす新たな機会が開かれた。
本稿では,AIのORプロセス(AI4OR)への統合について検討し,その有効性と効率を複数の段階にわたって向上させる。
AIとORの相乗効果は、多くの領域において、大幅な進歩と新しいソリューションを推し進める可能性がある。
論文 参考訳(メタデータ) (2024-01-06T15:55:14Z) - Human-AI Collaboration in Thematic Analysis using ChatGPT: A User Study
and Design Recommendations [0.0]
生成人工知能(GenAI)は、定性的研究において、人間とAIのコラボレーションを前進させる有望な可能性を提供する。
この研究は、GenAI、特にChatGPTとのコラボレーションに対する研究者の認識を掘り下げている。
論文 参考訳(メタデータ) (2023-11-07T13:54:56Z) - Confounding-Robust Policy Improvement with Human-AI Teams [9.823906892919746]
限界感度モデル(MSM)を用いて,人間とAIの協調作業における非観測的コンバウンディングに対処する新しい手法を提案する。
このアプローチでは、ドメインの専門知識とAI駆動の統計モデルを組み合わせることで、他の方法では隠される可能性がある共同ファウンダーの可能性を考慮しています。
論文 参考訳(メタデータ) (2023-10-13T02:39:52Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
AIOps(Artificial Intelligence for IT Operations)は、マシンラーニング、ビッグデータ、ストリーミング分析、IT運用管理の交差点で発生する、新たな学際分野である。
AIOPSワークショップの主な目的は、アカデミアと産業界の両方の研究者が集まり、この分野での経験、成果、作業について発表することです。
論文 参考訳(メタデータ) (2021-01-15T10:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。