論文の概要: Jet Discrimination with Quantum Complete Graph Neural Network
- arxiv url: http://arxiv.org/abs/2403.04990v3
- Date: Sat, 28 Sep 2024 08:51:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:00:35.339152
- Title: Jet Discrimination with Quantum Complete Graph Neural Network
- Title(参考訳): 量子完全グラフニューラルネットワークによるジェット識別
- Authors: Yi-An Chen, Kai-Feng Chen,
- Abstract要約: 本稿では,完全グラフに基づく変分量子アルゴリズムであるQuantum Complete Graph Neural Network (QCGNN)を提案する。
本研究は, ジェット判別の課題にQCGNNを適用し, ジェットを完全なグラフとして表現する手法である。
- 参考スコア(独自算出の注目度): 1.684646794156297
- License:
- Abstract: Machine learning, particularly deep neural networks, has been widely used in high-energy physics, demonstrating remarkable results in various applications. Furthermore, the extension of machine learning to quantum computers has given rise to the emerging field of quantum machine learning. In this paper, we propose the Quantum Complete Graph Neural Network (QCGNN), which is a variational quantum algorithm based model designed for learning on complete graphs. QCGNN with deep parametrized operators offers a polynomial speedup over its classical and quantum counterparts, leveraging the property of quantum parallelism. We investigate the application of QCGNN with the challenging task of jet discrimination, where the jets are represented as complete graphs. Additionally, we conduct a comparative analysis with classical models to establish a performance benchmark.
- Abstract(参考訳): 機械学習、特にディープニューラルネットワークは高エネルギー物理学で広く使われており、様々な応用において顕著な結果を示している。
さらに、機械学習から量子コンピュータへの拡張は、量子機械学習の新たな分野を生み出している。
本稿では,完全グラフを学習するために設計された変分量子アルゴリズムに基づくモデルである量子完全グラフニューラルネットワーク(QCGNN)を提案する。
深度パラメタライズド演算子を持つQCGNNは、古典的および量子的演算子よりも多項式スピードアップを提供し、量子並列性の性質を利用する。
本研究は, ジェット判別の課題にQCGNNを適用し, ジェットを完全なグラフとして表現する手法である。
さらに,従来のモデルとの比較分析を行い,性能ベンチマークを確立する。
関連論文リスト
- From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
量子グラフニューラルネットワーク(QGNN)は、量子コンピューティングとグラフニューラルネットワーク(GNN)の新たな融合を表す。
本稿では,QGNNの現状を批判的にレビューし,様々なアーキテクチャを探求する。
我々は、高エネルギー物理学、分子化学、ファイナンス、地球科学など多種多様な分野にまたがる応用について論じ、量子的優位性の可能性を強調した。
論文 参考訳(メタデータ) (2024-08-12T22:53:14Z) - Quantum Positional Encodings for Graph Neural Networks [1.9791587637442671]
本稿では,量子コンピュータを用いて得られたグラフニューラルネットワークに適した位置符号化の新たなファミリを提案する。
私たちのインスピレーションは、量子処理ユニットの最近の進歩に起因しています。
論文 参考訳(メタデータ) (2024-05-21T17:56:33Z) - A Comparison Between Invariant and Equivariant Classical and Quantum Graph Neural Networks [3.350407101925898]
グラフニューラルネットワーク(GNN)のような深層幾何学的手法は、高エネルギー物理学における様々なデータ解析タスクに活用されている。
典型的なタスクはジェットタグであり、ジェットは異なる特徴とそれらの構成粒子間のエッジ接続を持つ点雲と見なされる。
本稿では,古典的グラフニューラルネットワーク(GNN)と,その量子回路との公平かつ包括的な比較を行う。
論文 参考訳(メタデータ) (2023-11-30T16:19:13Z) - Quantum Phase Recognition using Quantum Tensor Networks [0.0]
本稿では,教師付き学習タスクのためのテンソルネットワークにインスパイアされた浅部変分アンザツに基づく量子機械学習手法について検討する。
マルチスケールエンタングルメント再正規化アンサッツ (MERA) とツリーテンソルネットワーク (TTN) がパラメタライズド量子回路にインスパイアされた場合、テストセットの精度が$geq 98%に達する。
論文 参考訳(メタデータ) (2022-12-12T19:29:07Z) - Impact of the form of weighted networks on the quantum extreme reservoir computation [0.0]
量子極端貯水池計算(QERC)は、汎用的な量子ニューラルネットワークモデルである。
本稿では,その簡単な実装経路を持つ乱れ離散時間結晶に基づく単純なハミルトンモデルが,ほぼ最適性能を実現する方法を示す。
論文 参考訳(メタデータ) (2022-11-15T01:50:47Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。