論文の概要: Quantum Positional Encodings for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2406.06547v1
- Date: Tue, 21 May 2024 17:56:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-23 13:55:28.399879
- Title: Quantum Positional Encodings for Graph Neural Networks
- Title(参考訳): グラフニューラルネットワークのための量子位置符号化
- Authors: Slimane Thabet, Mehdi Djellabi, Igor Sokolov, Sachin Kasture, Louis-Paul Henry, Loïc Henriet,
- Abstract要約: 本稿では,量子コンピュータを用いて得られたグラフニューラルネットワークに適した位置符号化の新たなファミリを提案する。
私たちのインスピレーションは、量子処理ユニットの最近の進歩に起因しています。
- 参考スコア(独自算出の注目度): 1.9791587637442671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose novel families of positional encodings tailored to graph neural networks obtained with quantum computers. These encodings leverage the long-range correlations inherent in quantum systems that arise from mapping the topology of a graph onto interactions between qubits in a quantum computer. Our inspiration stems from the recent advancements in quantum processing units, which offer computational capabilities beyond the reach of classical hardware. We prove that some of these quantum features are theoretically more expressive for certain graphs than the commonly used relative random walk probabilities. Empirically, we show that the performance of state-of-the-art models can be improved on standard benchmarks and large-scale datasets by computing tractable versions of quantum features. Our findings highlight the potential of leveraging quantum computing capabilities to enhance the performance of transformers in handling graph data.
- Abstract(参考訳): 本研究では,量子コンピュータで得られたグラフニューラルネットワークに適した位置符号化の新たなファミリを提案する。
これらのエンコーディングは、量子コンピュータ内の量子ビット間の相互作用にグラフの位相をマッピングすることによって生じる量子系に固有の長距離相関を利用する。
私たちのインスピレーションは、量子処理ユニットの最近の進歩に起因しています。
これらの量子的特徴のいくつかは、一般的に使用される相対的なランダムウォーク確率よりも理論上、あるグラフに対して表現的であることを証明している。
実験により,量子特性の抽出可能なバージョンを計算することにより,標準的なベンチマークや大規模データセット上での最先端モデルの性能を向上させることができることを示す。
本研究は,グラフデータ処理における変圧器の性能向上のために,量子コンピューティング機能を活用する可能性を強調した。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Enhancing the expressivity of quantum neural networks with residual
connections [0.0]
量子残差ニューラルネットワーク(QResNets)を実装する量子回路に基づくアルゴリズムを提案する。
我々の研究は、古典的残留ニューラルネットワークの完全な量子的実装の基礎を築いた。
論文 参考訳(メタデータ) (2024-01-29T04:00:51Z) - Enhancing Graph Neural Networks with Quantum Computed Encodings [1.884651553431727]
グラフ変換器に適した位置符号化の新たなファミリーを提案する。
これらのエンコーディングは、量子系に固有の長距離相関を利用する。
標準ベンチマークや大規模データセットでは,最先端モデルの性能向上が期待できる。
論文 参考訳(メタデータ) (2023-10-31T14:56:52Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - From Quantum Graph Computing to Quantum Graph Learning: A Survey [86.8206129053725]
まず、量子力学とグラフ理論の相関関係について、量子コンピュータが有用な解を生成できることを示す。
本稿では,その実践性と適用性について,一般的なグラフ学習手法について概説する。
今後の研究の触媒として期待される量子グラフ学習のスナップショットを提供する。
論文 参考訳(メタデータ) (2022-02-19T02:56:47Z) - Quantum machine learning of graph-structured data [0.38581147665516596]
グラフ構造化量子データについて検討し、量子ニューラルネットワークによる量子機械学習の実施方法について述べる。
我々は、この追加グラフ構造を体系的に利用して量子学習アルゴリズムを改善する方法について説明する。
論文 参考訳(メタデータ) (2021-03-19T14:39:19Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Quantum State Discrimination on Reconfigurable Noise-Robust Quantum
Networks [6.85316573653194]
量子情報処理における根本的な問題は、システムの量子状態の集合の識別である。
本稿では、この問題を量子ウォークによって定義されるグラフによって記述されたオープン量子システム上で解決する。
ネットワークのパラメータを最適化し、正しい識別の確率を最大化する。
論文 参考訳(メタデータ) (2020-03-25T19:07:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。