論文の概要: Aligning Large Language Models for Controllable Recommendations
- arxiv url: http://arxiv.org/abs/2403.05063v2
- Date: Sun, 4 Aug 2024 11:49:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-06 23:26:29.684564
- Title: Aligning Large Language Models for Controllable Recommendations
- Title(参考訳): 制御可能なレコメンデーションのための大規模言語モデルの調整
- Authors: Wensheng Lu, Jianxun Lian, Wei Zhang, Guanghua Li, Mingyang Zhou, Hao Liao, Xing Xie,
- Abstract要約: 従来のレコメンデータモデルから派生したラベルを付加した教師付き学習タスクのコレクションを導入する。
そこで我々は,LLMの能力を高めるための強化学習に基づくアライメント手法を開発した。
提案手法は,高い精度性能を維持しつつ,レコメンダシステム内の命令に準拠するLLMの能力を大幅に向上させる。
- 参考スコア(独自算出の注目度): 31.255594408462322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by the exceptional general intelligence of Large Language Models (LLMs), researchers have begun to explore their application in pioneering the next generation of recommender systems - systems that are conversational, explainable, and controllable. However, existing literature primarily concentrates on integrating domain-specific knowledge into LLMs to enhance accuracy, often neglecting the ability to follow instructions. To address this gap, we initially introduce a collection of supervised learning tasks, augmented with labels derived from a conventional recommender model, aimed at explicitly improving LLMs' proficiency in adhering to recommendation-specific instructions. Subsequently, we develop a reinforcement learning-based alignment procedure to further strengthen LLMs' aptitude in responding to users' intentions and mitigating formatting errors. Through extensive experiments on two real-world datasets, our method markedly advances the capability of LLMs to comply with instructions within recommender systems, while sustaining a high level of accuracy performance.
- Abstract(参考訳): LLM(Large Language Models)という異例の汎用知性に触発された研究者たちは、次世代のレコメンダシステム(会話型、説明可能、制御可能なシステム)のパイオニアとして、その応用を探求し始めている。
しかし、既存の文献は主にLLMにドメイン固有の知識を統合することに集中しており、しばしば命令に従う能力を無視している。
このギャップに対処するために、我々はまず、従来のレコメンデータモデルから派生したラベルを付加した教師付き学習タスクのコレクションを導入し、レコメンデーション固有の指示に適応するLLMの能力を明確に向上することを目的とした。
その後、ユーザ意図に応じてLCMの能力を高め、フォーマットエラーを軽減するための強化学習ベースのアライメント手法を開発した。
提案手法は,2つの実世界のデータセットに対する広範な実験を通じて,高い精度の精度を維持しつつ,レコメンダシステム内の命令に準拠するLLMの能力を大幅に向上させる。
関連論文リスト
- RLRF4Rec: Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Reranking [33.54698201942643]
大規模言語モデル(LLM)は、様々な領域で顕著なパフォーマンスを示している。
本稿では,Reinforcement Learning from Recsys Feedback for Enhanced Recommendation Re rankを組み込んだ新しいフレームワークであるRLRF4Recを紹介する。
論文 参考訳(メタデータ) (2024-10-08T11:42:37Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
セッションベースレコメンデーション(SBR)を強化するための有望なアプローチとして,大規模言語モデル(LLM)が登場している。
本稿では,SBRのための反射強化大言語モデル(Re2LLM)を提案する。
論文 参考訳(メタデータ) (2024-03-25T05:12:18Z) - Exploring the Impact of Large Language Models on Recommender Systems: An Extensive Review [2.780460221321639]
本稿では,リフォームレコメンダシステムにおける大規模言語モデルの重要性について述べる。
LLMは、言葉の複雑な解釈において、その適応性を示す、アイテムを推薦するのに非常に熟練している。
トランスフォーメーションの可能性にもかかわらず、入力プロンプトに対する感受性、時には誤解釈、予期せぬ推奨など、課題は続いている。
論文 参考訳(メタデータ) (2024-02-11T00:24:17Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
推奨領域におけるLarge Language Models (LLMs) の適用について, 十分に検討されていない。
我々は、評価予測、シーケンシャルレコメンデーション、直接レコメンデーション、説明生成、レビュー要約を含む5つのレコメンデーションタスクにおいて、市販のLLMをベンチマークする。
ベンチマークの結果,LLMは逐次的・直接的推薦といった精度に基づくタスクにおいて適度な熟練度しか示さないことがわかった。
論文 参考訳(メタデータ) (2023-08-23T16:32:54Z) - Recommender Systems in the Era of Large Language Models (LLMs) [62.0129013439038]
大規模言語モデル(LLM)は自然言語処理(NLP)と人工知能(AI)の分野に革命をもたらした。
我々は, プレトレーニング, ファインチューニング, プロンプティングなどの様々な側面から, LLM を利用したレコメンデータシステムの総合的なレビューを行う。
論文 参考訳(メタデータ) (2023-07-05T06:03:40Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - LMPriors: Pre-Trained Language Models as Task-Specific Priors [78.97143833642971]
適切な事前条件でモデルを拡張するための原則的手法を開発した。
これは、世界に対する私たちの理解と相容れない方法で学ぶことを奨励するものです。
我々は,近年の大規模言語モデル(LM)の成功から着想を得た。
論文 参考訳(メタデータ) (2022-10-22T19:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。