Dynamic ensemble selection based on Deep Neural Network Uncertainty
Estimation for Adversarial Robustness
- URL: http://arxiv.org/abs/2308.00346v1
- Date: Tue, 1 Aug 2023 07:41:41 GMT
- Title: Dynamic ensemble selection based on Deep Neural Network Uncertainty
Estimation for Adversarial Robustness
- Authors: Ruoxi Qin, Linyuan Wang, Xuehui Du, Xingyuan Chen, Bin Yan
- Abstract summary: This work explore the dynamic attributes in model level through dynamic ensemble selection technology.
In training phase the Dirichlet distribution is apply as prior of sub-models' predictive distribution, and the diversity constraint in parameter space is introduced.
In test phase, the certain sub-models are dynamically selected based on their rank of uncertainty value for the final prediction.
- Score: 7.158144011836533
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The deep neural network has attained significant efficiency in image
recognition. However, it has vulnerable recognition robustness under extensive
data uncertainty in practical applications. The uncertainty is attributed to
the inevitable ambient noise and, more importantly, the possible adversarial
attack. Dynamic methods can effectively improve the defense initiative in the
arms race of attack and defense of adversarial examples. Different from the
previous dynamic method depend on input or decision, this work explore the
dynamic attributes in model level through dynamic ensemble selection technology
to further protect the model from white-box attacks and improve the robustness.
Specifically, in training phase the Dirichlet distribution is apply as prior of
sub-models' predictive distribution, and the diversity constraint in parameter
space is introduced under the lightweight sub-models to construct alternative
ensembel model spaces. In test phase, the certain sub-models are dynamically
selected based on their rank of uncertainty value for the final prediction to
ensure the majority accurate principle in ensemble robustness and accuracy.
Compared with the previous dynamic method and staic adversarial traning model,
the presented approach can achieve significant robustness results without
damaging accuracy by combining dynamics and diversity property.
Related papers
- Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Dynamic Label Adversarial Training for Deep Learning Robustness Against Adversarial Attacks [11.389689242531327]
Adversarial training is one of the most effective methods for enhancing model robustness.
Previous approaches primarily use static ground truth for adversarial training, but this often causes robust overfitting.
We propose a dynamic label adversarial training (DYNAT) algorithm that enables the target model to gain robustness from the guide model's decisions.
arXiv Detail & Related papers (2024-08-23T14:25:12Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks.
In this work, we propose a generic method for introducingity in the network predictions.
We also utilize this for smoothing decision rejecting low confidence predictions.
arXiv Detail & Related papers (2023-06-10T15:11:24Z) - Sequential Bayesian Neural Subnetwork Ensembles [4.6354120722975125]
We propose an approach for sequential ensembling of dynamic Bayesian neuralworks that consistently maintains reduced model complexity throughout the training process.
Our proposed approach outperforms traditional dense and sparse deterministic and Bayesian ensemble models in terms of prediction accuracy, uncertainty estimation, out-of-distribution detection, and adversarial robustness.
arXiv Detail & Related papers (2022-06-01T22:57:52Z) - (De-)Randomized Smoothing for Decision Stump Ensembles [5.161531917413708]
Tree-based models are used in many high-stakes application domains such as finance and medicine.
We propose deterministic smoothing for decision stump ensembles.
We obtain deterministic robustness certificates, even jointly over numerical and categorical features.
arXiv Detail & Related papers (2022-05-27T11:23:50Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
We propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift.
We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions.
arXiv Detail & Related papers (2020-12-20T13:39:29Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.