論文の概要: Towards a Psychology of Machines: Large Language Models Predict Human Memory
- arxiv url: http://arxiv.org/abs/2403.05152v2
- Date: Mon, 14 Oct 2024 14:24:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:04:53.346317
- Title: Towards a Psychology of Machines: Large Language Models Predict Human Memory
- Title(参考訳): 機械心理学に向けて:人間の記憶を予測する大言語モデル
- Authors: Markus Huff, Elanur Ulakçı,
- Abstract要約: 大規模言語モデル(LLM)は、人間の認知に基づいていないにもかかわらず、様々なタスクで優れています。
本研究では,ChatGPTが言語ベースのメモリタスクにおいて,人間のパフォーマンスを予測する能力について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Large language models (LLMs) are excelling across various tasks despite not being based on human cognition, prompting an investigation into their potential to offer insights into human cognitive mechanisms. This study examines ChatGPT's ability to predict human performance in a language-based memory task. Following theories of text comprehension, we hypothesized that recognizing ambiguous sentences is easier with relevant preceding context. Participants, including humans and ChatGPT, were given pairs of sentences: the second always a garden-path sentence, and the first providing either fitting or unfitting context. We measured their ratings of sentence relatedness and memorability. Results showed a strong alignment between ChatGPT's assessments and human memory performance. Sentences in the fitting context were rated as being more related and memorable by ChatGPT and were better remembered by humans, highlighting LLMs' potential to predict human performance and contribute to psychological theories.
- Abstract(参考訳): 大きな言語モデル(LLM)は、人間の認知に基づいていないにもかかわらず、様々なタスクで優れており、人間の認知メカニズムに関する洞察を提供する可能性について調査する。
本研究では,ChatGPTが言語ベースのメモリタスクにおいて,人間のパフォーマンスを予測する能力について検討する。
テキスト理解の理論に従えば,先行する文脈では曖昧な文の認識がより容易である,という仮説を立てた。
人間やChatGPTを含む参加者には、常に庭の道の文と、適当か不適当かという2つの文が与えられた。
我々はそれらの文関連性および記憶可能性の格付けを測定した。
その結果,ChatGPTの評価値と人間の記憶性能との間には強い相関が認められた。
フィットの文脈における文は、ChatGPTによりより関連性があり記憶可能なものと評価され、人間によって記憶され、人間のパフォーマンスを予測し心理学理論に貢献するLLMの可能性を強調した。
関連論文リスト
- Judgment of Learning: A Human Ability Beyond Generative Artificial Intelligence [0.0]
大規模言語モデル(LLM)は、様々な言語に基づくタスクにおいて、人間の認知を模倣する傾向にある。
我々は、ChatGPTに基づくLLMが人間の学習判断(JOL)と一致しているかどうかを評価するために、クロスエージェント予測モデルを導入する。
実験の結果,人間のJOLは実際のメモリ性能を確実に予測するが,いずれのLLMも同等の予測精度は示さなかった。
論文 参考訳(メタデータ) (2024-10-17T09:42:30Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Measuring Psychological Depth in Language Models [50.48914935872879]
本稿では,文学理論に根ざした新たな枠組みである心理的深度尺度(PDS)を紹介する。
PDS(0.72 クリッペンドルフのα)に基づいて人間が一貫して物語を評価できることを示し、我々の枠組みを実証的に検証する。
驚いたことに、GPT-4のストーリーはRedditから入手した高評価の人文記事と統計的に区別できない。
論文 参考訳(メタデータ) (2024-06-18T14:51:54Z) - Linking In-context Learning in Transformers to Human Episodic Memory [1.124958340749622]
我々は,トランスフォーマーに基づく大規模言語モデルにおいて,文脈内学習に寄与する帰納的頭部に焦点を当てた。
本研究では,インダクションヘッドの動作,機能,機械的特性が,ヒトのエピソード記憶の文脈的保守と検索モデルに類似していることを示す。
論文 参考訳(メタデータ) (2024-05-23T18:51:47Z) - Divergences between Language Models and Human Brains [59.100552839650774]
我々は,人間と機械語処理の相違点を体系的に探求する。
我々は、LMがうまく捉えられない2つの領域、社会的/感情的知性と身体的常識を識別する。
以上の結果から,これらの領域における微調整LMは,ヒト脳反応との整合性を向上させることが示唆された。
論文 参考訳(メタデータ) (2023-11-15T19:02:40Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
PsyCoTと呼ばれる新しい人格検出手法を提案する。これは、個人がマルチターン対話方式で心理的質問を完遂する方法を模倣するものである。
実験の結果,PsyCoTは人格検出におけるGPT-3.5の性能とロバスト性を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2023-10-31T08:23:33Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
影響認識は人間のコミュニケーションにおいて重要な役割を担っている。
本研究では,会話における人間の影響を認識するための言語モデル(LLM)の能力について検討する。
論文 参考訳(メタデータ) (2023-09-22T14:11:23Z) - Do Large Language Models Show Decision Heuristics Similar to Humans? A
Case Study Using GPT-3.5 [0.0]
GPT-3.5は、ChatGPTと呼ばれる会話エージェントをサポートするLLMの例である。
本研究では,ChatGPTがバイアスを示すか,その他の決定効果を示すかを決定するために,一連の新しいプロンプトを用いた。
また、同じプロンプトをヒトでもテストしました。
論文 参考訳(メタデータ) (2023-05-08T01:02:52Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
この研究は、認知科学研究を支援することができる人工知能エージェントに貢献する。
開発された人工知能システム(SensAI+Expanse)には、機械学習アルゴリズム、共感アルゴリズム、メモリが含まれる。
本研究は, 年齢と性別の相違が有意であることを示すものである。
論文 参考訳(メタデータ) (2020-01-03T18:17:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。