Towards a Psychology of Machines: Large Language Models Predict Human Memory
- URL: http://arxiv.org/abs/2403.05152v3
- Date: Wed, 04 Dec 2024 19:01:43 GMT
- Title: Towards a Psychology of Machines: Large Language Models Predict Human Memory
- Authors: Markus Huff, Elanur Ulakçı,
- Abstract summary: Large language models (LLMs) have shown remarkable abilities in natural language processing.
This study explores whether LLMs can predict human memory performance in tasks involving garden-path sentences and contextual information.
- Score: 0.0
- License:
- Abstract: Large language models (LLMs), such as ChatGPT, have shown remarkable abilities in natural language processing, opening new avenues in psychological research. This study explores whether LLMs can predict human memory performance in tasks involving garden-path sentences and contextual information. In the first part, we used ChatGPT to rate the relatedness and memorability of garden-path sentences preceded by either fitting or unfitting contexts. In the second part, human participants read the same sentences, rated their relatedness, and completed a surprise memory test. The results demonstrated that ChatGPT's relatedness ratings closely matched those of the human participants, and its memorability ratings effectively predicted human memory performance. Both LLM and human data revealed that higher relatedness in the unfitting context condition was associated with better memory performance, aligning with probabilistic frameworks of context-dependent learning. These findings suggest that LLMs, despite lacking human-like memory mechanisms, can model aspects of human cognition and serve as valuable tools in psychological research. We propose the field of machine psychology to explore this interplay between human cognition and artificial intelligence, offering a bidirectional approach where LLMs can both benefit from and contribute to our understanding of human cognitive processes.
Related papers
- Judgment of Learning: A Human Ability Beyond Generative Artificial Intelligence [0.0]
Large language models (LLMs) increasingly mimic human cognition in various language-based tasks.
We introduce a cross-agent prediction model to assess whether ChatGPT-based LLMs align with human judgments of learning (JOL)
Our results revealed that while human JOL reliably predicted actual memory performance, none of the tested LLMs demonstrated comparable predictive accuracy.
arXiv Detail & Related papers (2024-10-17T09:42:30Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Measuring Psychological Depth in Language Models [50.48914935872879]
We introduce the Psychological Depth Scale (PDS), a novel framework rooted in literary theory that measures an LLM's ability to produce authentic and narratively complex stories.
We empirically validate our framework by showing that humans can consistently evaluate stories based on PDS (0.72 Krippendorff's alpha)
Surprisingly, GPT-4 stories either surpassed or were statistically indistinguishable from highly-rated human-written stories sourced from Reddit.
arXiv Detail & Related papers (2024-06-18T14:51:54Z) - Linking In-context Learning in Transformers to Human Episodic Memory [1.124958340749622]
We focus on induction heads, which contribute to in-context learning in Transformer-based large language models.
We demonstrate that induction heads are behaviorally, functionally, and mechanistically similar to the contextual maintenance and retrieval model of human episodic memory.
arXiv Detail & Related papers (2024-05-23T18:51:47Z) - Divergences between Language Models and Human Brains [59.100552839650774]
We systematically explore the divergences between human and machine language processing.
We identify two domains that LMs do not capture well: social/emotional intelligence and physical commonsense.
Our results show that fine-tuning LMs on these domains can improve their alignment with human brain responses.
arXiv Detail & Related papers (2023-11-15T19:02:40Z) - PsyCoT: Psychological Questionnaire as Powerful Chain-of-Thought for
Personality Detection [50.66968526809069]
We propose a novel personality detection method, called PsyCoT, which mimics the way individuals complete psychological questionnaires in a multi-turn dialogue manner.
Our experiments demonstrate that PsyCoT significantly improves the performance and robustness of GPT-3.5 in personality detection.
arXiv Detail & Related papers (2023-10-31T08:23:33Z) - Affect Recognition in Conversations Using Large Language Models [9.689990547610664]
Affect recognition plays a pivotal role in human communication.
This study investigates the capacity of large language models (LLMs) to recognise human affect in conversations.
arXiv Detail & Related papers (2023-09-22T14:11:23Z) - Do Large Language Models Show Decision Heuristics Similar to Humans? A
Case Study Using GPT-3.5 [0.0]
GPT-3.5 is an example of an LLM that supports a conversational agent called ChatGPT.
In this work, we used a series of novel prompts to determine whether ChatGPT shows biases, and other decision effects.
We also tested the same prompts on human participants.
arXiv Detail & Related papers (2023-05-08T01:02:52Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
This work contributes with an artificial intelligent agent able to assist on cognitive science studies.
The developed artificial agent system (SensAI+Expanse) includes machine learning algorithms, empathetic algorithms, and memory.
Results of the present study show evidence of significant emotional behaviour differences between some age ranges and gender combinations.
arXiv Detail & Related papers (2020-01-03T18:17:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.