OccFusion: Depth Estimation Free Multi-sensor Fusion for 3D Occupancy Prediction
- URL: http://arxiv.org/abs/2403.05329v2
- Date: Wed, 10 Jul 2024 11:08:14 GMT
- Title: OccFusion: Depth Estimation Free Multi-sensor Fusion for 3D Occupancy Prediction
- Authors: Ji Zhang, Yiran Ding, Zixin Liu,
- Abstract summary: 3D occupancy prediction based on multi-sensor fusion,crucial for a reliable autonomous driving system.
Previous fusion-based 3D occupancy predictions relied on depth estimation for processing 2D image features.
We propose OccFusion, a depth estimation free multi-modal fusion framework.
- Score: 5.285847977231642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D occupancy prediction based on multi-sensor fusion,crucial for a reliable autonomous driving system, enables fine-grained understanding of 3D scenes. Previous fusion-based 3D occupancy predictions relied on depth estimation for processing 2D image features. However, depth estimation is an ill-posed problem, hindering the accuracy and robustness of these methods. Furthermore, fine-grained occupancy prediction demands extensive computational resources. To address these issues, we propose OccFusion, a depth estimation free multi-modal fusion framework. Additionally, we introduce a generalizable active training method and an active decoder that can be applied to any occupancy prediction model, with the potential to enhance their performance. Experiments conducted on nuScenes-Occupancy and nuScenes-Occ3D demonstrate our framework's superior performance. Detailed ablation studies highlight the effectiveness of each proposed method.
Related papers
- OccLoff: Learning Optimized Feature Fusion for 3D Occupancy Prediction [5.285847977231642]
3D semantic occupancy prediction is crucial for ensuring the safety in autonomous driving.
Existing fusion-based occupancy methods typically involve performing a 2D-to-3D view transformation on image features.
We propose OccLoff, a framework that Learns to optimize Feature Fusion for 3D occupancy prediction.
arXiv Detail & Related papers (2024-11-06T06:34:27Z) - Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
Existing methods perform sensor fusion in a single view by projecting features from both modalities either in Bird's Eye View (BEV) or Perspective View (PV)
We propose ProFusion3D, a progressive fusion framework that combines features in both BEV and PV at both intermediate and object query levels.
Our architecture hierarchically fuses local and global features, enhancing the robustness of 3D object detection.
arXiv Detail & Related papers (2024-10-09T22:57:47Z) - DAOcc: 3D Object Detection Assisted Multi-Sensor Fusion for 3D Occupancy Prediction [11.349017382503986]
Multi-sensor fusion significantly enhances the accuracy and robustness of 3D semantic occupancy prediction.
Most existing approaches depend on large image resolutions and complex networks to achieve top performance.
We propose BEcc, a novel multi-modal occupancy prediction framework that leverages 3D object detection supervision to assist in achieving superior performance.
arXiv Detail & Related papers (2024-09-30T05:53:31Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3D is a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models.
We evaluate 28 state-of-the-art models across 10 diverse 3D datasets.
We introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration.
arXiv Detail & Related papers (2024-03-25T17:59:59Z) - OccFusion: Multi-Sensor Fusion Framework for 3D Semantic Occupancy Prediction [11.33083039877258]
This paper introduces OccFusion, a novel sensor fusion framework for predicting 3D occupancy.
By integrating features from additional sensors, such as lidar and surround view radars, our framework enhances the accuracy and robustness of occupancy prediction.
arXiv Detail & Related papers (2024-03-03T23:46:06Z) - Self-Supervised Depth Completion Guided by 3D Perception and Geometry
Consistency [17.68427514090938]
This paper explores the utilization of 3D perceptual features and multi-view geometry consistency to devise a high-precision self-supervised depth completion method.
Experiments on benchmark datasets of NYU-Depthv2 and VOID demonstrate that the proposed model achieves the state-of-the-art depth completion performance.
arXiv Detail & Related papers (2023-12-23T14:19:56Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
3D occupancy prediction is an emerging task that aims to estimate the occupancy states and semantics of 3D scenes using multi-view images.
We propose RadOcc, a Rendering assisted distillation paradigm for 3D Occupancy prediction.
arXiv Detail & Related papers (2023-12-19T03:39:56Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
Supervised approaches to 3D pose estimation from single images are remarkably effective when labeled data is abundant.
Much of the recent attention has shifted towards semi and (or) weakly supervised learning.
We propose to impose multi-view geometrical constraints by means of a differentiable triangulation and to use it as form of self-supervision during training when no labels are available.
arXiv Detail & Related papers (2022-03-29T19:11:54Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.