論文の概要: Understanding the Progression of Educational Topics via Semantic Matching
- arxiv url: http://arxiv.org/abs/2403.05553v1
- Date: Sat, 10 Feb 2024 08:24:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 08:36:53.275694
- Title: Understanding the Progression of Educational Topics via Semantic Matching
- Title(参考訳): セマンティックマッチングによる教育トピックの進展の理解
- Authors: Tamador Alkhidir, Edmond Awad, Aamena Alshamsi,
- Abstract要約: 教育システムは、技術進歩、工業的、社会的ニーズに適応し、学生の学習行動を強化するために、動的に変化している。
カリキュラムスペシャリストや教育者は、学年ごとの教科を常に改訂し、ギャップを特定し、新しい学習トピックを導入し、学習結果を強化する。
データセット内に構築された主題、トピック、学習結果に関する微妙なデータを持つことで、データサイエンスを活用して、さまざまな学習トピックの進捗をよりよく理解することが可能になる。
- 参考スコア(独自算出の注目度): 0.9246281666115259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Education systems are dynamically changing to accommodate technological advances, industrial and societal needs, and to enhance students' learning journeys. Curriculum specialists and educators constantly revise taught subjects across educational grades to identify gaps, introduce new learning topics, and enhance the learning outcomes. This process is usually done within the same subjects (e.g. math) or across related subjects (e.g. math and physics) considering the same and different educational levels, leading to massive multi-layer comparisons. Having nuanced data about subjects, topics, and learning outcomes structured within a dataset, empowers us to leverage data science to better understand the progression of various learning topics. In this paper, Bidirectional Encoder Representations from Transformers (BERT) topic modeling was used to extract topics from the curriculum, which were then used to identify relationships between subjects, track their progression, and identify conceptual gaps. We found that grouping learning outcomes by common topics helped specialists reduce redundancy and introduce new concepts in the curriculum. We built a dashboard to avail the methodology to curriculum specials. Finally, we tested the validity of the approach with subject matter experts.
- Abstract(参考訳): 教育システムは、技術進歩、工業的、社会的なニーズに対応し、学生の学習行動を強化するために、動的に変化している。
カリキュラムスペシャリストや教育者は、学年ごとの教科を常に改訂し、ギャップを特定し、新しい学習トピックを導入し、学習結果を強化する。
このプロセスは通常、同じ科目(例えば数学)または関連する科目(例えば数学と物理学)で同じレベルと異なる教育レベルを考慮して行われ、大規模な多層比較に繋がる。
データセット内に構築された主題、トピック、学習結果に関する微妙なデータを持つことで、データサイエンスを活用して、さまざまな学習トピックの進捗をよりよく理解することが可能になる。
本稿では,変換器による双方向エンコーダ表現を用いてカリキュラムからトピックを抽出し,対象者間の関係の同定,進行の追跡,概念的ギャップの同定に利用した。
共通トピックによる学習結果のグルーピングは,専門家の冗長性を低減し,カリキュラムに新たな概念を導入するのに役立った。
カリキュラム専門に方法論を活用するためのダッシュボードを構築しました。
最後に,本手法の有効性を課題の専門家で検証した。
関連論文リスト
- Let Students Take the Wheel: Introducing Post-Quantum Cryptography with Active Learning [4.804847392457553]
ポスト量子暗号(PQC)は、既存のソフトウェアシステムをセキュアにするためのソリューションとして認識されている。
本研究は,PQCを大学生や大学院生に教える上での,新たなアクティブラーニング手法を提案する。
論文 参考訳(メタデータ) (2024-10-17T01:52:03Z) - Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs [58.09253149867228]
本稿では,LLMのドメイン知識を,問題解決に必要な数学的スキルの理解を通じて評価する。
汎用科学アシスタントとしてLLMを用いることで, LLMの確率分布の変化を評価するためにtextitNTKEvalを提案する。
系統的な分析では、文脈内学習中にドメイン理解の証拠が見つかる。
ある命令チューニングは、異なるデータでのトレーニングに関係なく、同様のパフォーマンス変化をもたらし、異なるスキルに対するドメイン理解の欠如を示唆している。
論文 参考訳(メタデータ) (2024-05-24T12:04:54Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
ビッグデータと人工知能の時代において、新しいパラダイムは、大規模な異種データをモデル化するために、対照的な自己教師付き学習を活用することである。
本調査は基礎モデルの異種コントラスト学習の現況を批判的に評価する。
論文 参考訳(メタデータ) (2024-03-30T02:55:49Z) - Representing Pedagogic Content Knowledge Through Rough Sets [0.0]
この論文は、論理モデルを構築したり、教師を支援するための意味を意識したAIソフトウェアを開発することを目的としている。
提案手法の主な利点は、あいまいさ、マルチモーダリティをコヒーレントに扱う能力である。
論文 参考訳(メタデータ) (2024-02-26T11:00:45Z) - Multi-source Education Knowledge Graph Construction and Fusion for
College Curricula [3.981835878719391]
本稿では,電子情報分野における知識抽出,視覚的KG構築,グラフ融合のためのフレームワークを提案する。
我々の目標は、学生の学習効率を高め、AIによって実現される新しい教育パラダイムを探求することである。
論文 参考訳(メタデータ) (2023-05-08T09:25:41Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
本稿では,マルチモーダル機械学習の計算的基礎と理論的基礎について概説する。
本稿では,表現,アライメント,推論,生成,伝達,定量化という,6つの技術課題の分類法を提案する。
最近の技術的成果は、この分類のレンズを通して示され、研究者は新しいアプローチの類似点と相違点を理解することができる。
論文 参考訳(メタデータ) (2022-09-07T19:21:19Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z) - Value Cards: An Educational Toolkit for Teaching Social Impacts of
Machine Learning through Deliberation [32.74513588794863]
Value Card(バリューカード)は、様々な機械学習モデルの社会的影響を、学生や実践者に検討を通じて知らせる教育ツールキットである。
その結果,バリューカードツールキットを用いることで,パフォーマンス指標の技術的定義とトレードオフの両方に対する学生の理解が向上することが示唆された。
論文 参考訳(メタデータ) (2020-10-22T03:27:19Z) - Contrastive Representation Learning: A Framework and Review [2.7393821783237184]
コントラスト学習の起源は1990年代まで遡り、その発展は多くの分野に及んでいる。
本稿では,多くの異なるコントラスト学習手法を単純化し,統一する一般的なコントラスト表現学習フレームワークを提案する。
コンピュータビジョンや自然言語処理,音声処理など,強化学習においても,コントラスト学習が適用された例も紹介されている。
論文 参考訳(メタデータ) (2020-10-10T22:46:25Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
本研究では,人間の解釈可能な概念次元に沿って学習することで,一般化能力を向上させるメタ学習手法であるCOMETを提案する。
我々は,細粒度画像分類,文書分類,セルタイプアノテーションなど,さまざまな領域からの少数ショットタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2020-07-14T22:04:17Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。