Understanding the Progression of Educational Topics via Semantic Matching
- URL: http://arxiv.org/abs/2403.05553v1
- Date: Sat, 10 Feb 2024 08:24:29 GMT
- Title: Understanding the Progression of Educational Topics via Semantic Matching
- Authors: Tamador Alkhidir, Edmond Awad, Aamena Alshamsi,
- Abstract summary: Education systems are dynamically changing to accommodate technological advances, industrial and societal needs, and to enhance students' learning journeys.
Curriculum specialists and educators constantly revise taught subjects across educational grades to identify gaps, introduce new learning topics, and enhance the learning outcomes.
Having nuanced data about subjects, topics, and learning outcomes structured within a dataset, empowers us to leverage data science to better understand the progression of various learning topics.
- Score: 0.9246281666115259
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Education systems are dynamically changing to accommodate technological advances, industrial and societal needs, and to enhance students' learning journeys. Curriculum specialists and educators constantly revise taught subjects across educational grades to identify gaps, introduce new learning topics, and enhance the learning outcomes. This process is usually done within the same subjects (e.g. math) or across related subjects (e.g. math and physics) considering the same and different educational levels, leading to massive multi-layer comparisons. Having nuanced data about subjects, topics, and learning outcomes structured within a dataset, empowers us to leverage data science to better understand the progression of various learning topics. In this paper, Bidirectional Encoder Representations from Transformers (BERT) topic modeling was used to extract topics from the curriculum, which were then used to identify relationships between subjects, track their progression, and identify conceptual gaps. We found that grouping learning outcomes by common topics helped specialists reduce redundancy and introduce new concepts in the curriculum. We built a dashboard to avail the methodology to curriculum specials. Finally, we tested the validity of the approach with subject matter experts.
Related papers
- Let Students Take the Wheel: Introducing Post-Quantum Cryptography with Active Learning [4.804847392457553]
Post-quantum cryptography (PQC) has been identified as the solution to secure existing software systems.
This research proposes a novel active learning approach and assesses the best practices for teaching PQC to undergraduate and graduate students.
arXiv Detail & Related papers (2024-10-17T01:52:03Z) - Learning Beyond Pattern Matching? Assaying Mathematical Understanding in LLMs [58.09253149867228]
This paper assesses the domain knowledge of LLMs through its understanding of different mathematical skills required to solve problems.
Motivated by the use of LLMs as a general scientific assistant, we propose textitNTKEval to assess changes in LLM's probability distribution.
Our systematic analysis finds evidence of domain understanding during in-context learning.
Certain instruction-tuning leads to similar performance changes irrespective of training on different data, suggesting a lack of domain understanding across different skills.
arXiv Detail & Related papers (2024-05-24T12:04:54Z) - Heterogeneous Contrastive Learning for Foundation Models and Beyond [73.74745053250619]
In the era of big data and Artificial Intelligence, an emerging paradigm is to utilize contrastive self-supervised learning to model large-scale heterogeneous data.
This survey critically evaluates the current landscape of heterogeneous contrastive learning for foundation models.
arXiv Detail & Related papers (2024-03-30T02:55:49Z) - Representing Pedagogic Content Knowledge Through Rough Sets [0.0]
The paper is meant for rough set researchers intending to build logical models or develop meaning-aware AI-software to aid teachers.
The main advantage of the proposed approach is in its ability to coherently handle vagueness, multi-modality.
arXiv Detail & Related papers (2024-02-26T11:00:45Z) - Multi-source Education Knowledge Graph Construction and Fusion for
College Curricula [3.981835878719391]
We propose an automated framework for knowledge extraction, visual KG construction, and graph fusion for the major of Electronic Information.
Our objective is to enhance the learning efficiency of students and to explore new educational paradigms enabled by AI.
arXiv Detail & Related papers (2023-05-08T09:25:41Z) - Foundations and Recent Trends in Multimodal Machine Learning:
Principles, Challenges, and Open Questions [68.6358773622615]
This paper provides an overview of the computational and theoretical foundations of multimodal machine learning.
We propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification.
Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches.
arXiv Detail & Related papers (2022-09-07T19:21:19Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Value Cards: An Educational Toolkit for Teaching Social Impacts of
Machine Learning through Deliberation [32.74513588794863]
Value Card is an educational toolkit to inform students and practitioners of the social impacts of different machine learning models via deliberation.
Our results suggest that the use of the Value Cards toolkit can improve students' understanding of both the technical definitions and trade-offs of performance metrics.
arXiv Detail & Related papers (2020-10-22T03:27:19Z) - Contrastive Representation Learning: A Framework and Review [2.7393821783237184]
The origins of Contrastive Learning date as far back as the 1990s and its development has spanned across many fields.
We propose a general Contrastive Representation Learning framework that simplifies and unifies many different contrastive learning methods.
Examples of how contrastive learning has been applied in computer vision, natural language processing, audio processing, and others, as well as in Reinforcement Learning are also presented.
arXiv Detail & Related papers (2020-10-10T22:46:25Z) - Concept Learners for Few-Shot Learning [76.08585517480807]
We propose COMET, a meta-learning method that improves generalization ability by learning to learn along human-interpretable concept dimensions.
We evaluate our model on few-shot tasks from diverse domains, including fine-grained image classification, document categorization and cell type annotation.
arXiv Detail & Related papers (2020-07-14T22:04:17Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
We build an end-to-end neural framework that automatically detects questions from teachers' audio recordings.
By incorporating multi-task learning techniques, we are able to strengthen the understanding of semantic relations among different types of questions.
arXiv Detail & Related papers (2020-05-16T02:17:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.