HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy
- URL: http://arxiv.org/abs/2403.05574v3
- Date: Mon, 29 Jul 2024 12:05:36 GMT
- Title: HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy
- Authors: Mengxi Xiao, Qianqian Xie, Ziyan Kuang, Zhicheng Liu, Kailai Yang, Min Peng, Weiguang Han, Jimin Huang,
- Abstract summary: We unveil the Helping and Empowering through Adaptive Language in Mental Enhancement (HealMe) model.
This novel cognitive reframing therapy method effectively addresses deep-rooted negative thoughts and fosters rational, balanced perspectives.
We adopt the first comprehensive and expertly crafted psychological evaluation metrics, specifically designed to rigorously assess the performance of cognitive reframing.
- Score: 25.908522131646258
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) can play a vital role in psychotherapy by adeptly handling the crucial task of cognitive reframing and overcoming challenges such as shame, distrust, therapist skill variability, and resource scarcity. Previous LLMs in cognitive reframing mainly converted negative emotions to positive ones, but these approaches have limited efficacy, often not promoting clients' self-discovery of alternative perspectives. In this paper, we unveil the Helping and Empowering through Adaptive Language in Mental Enhancement (HealMe) model. This novel cognitive reframing therapy method effectively addresses deep-rooted negative thoughts and fosters rational, balanced perspectives. Diverging from traditional LLM methods, HealMe employs empathetic dialogue based on psychotherapeutic frameworks. It systematically guides clients through distinguishing circumstances from feelings, brainstorming alternative viewpoints, and developing empathetic, actionable suggestions. Moreover, we adopt the first comprehensive and expertly crafted psychological evaluation metrics, specifically designed to rigorously assess the performance of cognitive reframing, in both AI-simulated dialogues and real-world therapeutic conversations. Experimental results show that our model outperforms others in terms of empathy, guidance, and logical coherence, demonstrating its effectiveness and potential positive impact on psychotherapy.
Related papers
- Interactive Dialogue Agents via Reinforcement Learning on Hindsight Regenerations [58.65755268815283]
Many real dialogues are interactive, meaning an agent's utterances will influence their conversational partner, elicit information, or change their opinion.
We use this fact to rewrite and augment existing suboptimal data, and train via offline reinforcement learning (RL) an agent that outperforms both prompting and learning from unaltered human demonstrations.
Our results in a user study with real humans show that our approach greatly outperforms existing state-of-the-art dialogue agents.
arXiv Detail & Related papers (2024-11-07T21:37:51Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.
We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.
Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT [6.812247730094931]
We investigate the potential and limitations of using large language models (LLMs) as providers of evidence-based therapy.
We replicated publicly accessible mental health conversations rooted in Cognitive Behavioral Therapy (CBT) to compare session dynamics and counselor's CBT-based behaviors.
Our findings show that the peer sessions are characterized by empathy, small talk, therapeutic alliance, and shared experiences but often exhibit therapist drift.
arXiv Detail & Related papers (2024-09-03T19:19:13Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
Large language models (LLMs) have been validated, providing new possibilities for psychological assistance therapy.
Many concerns have been raised by mental health experts regarding the use of LLMs for therapy.
Four LLM variants with excellent performance on natural language processing are evaluated.
arXiv Detail & Related papers (2024-07-25T03:01:47Z) - Cactus: Towards Psychological Counseling Conversations using Cognitive Behavioral Theory [24.937025825501998]
We create a multi-turn dialogue dataset that emulates real-life interactions using the goal-oriented and structured approach of Cognitive Behavioral Therapy (CBT)
We benchmark against established psychological criteria used to evaluate real counseling sessions, ensuring alignment with expert evaluations.
Experimental results demonstrate that Camel, a model trained with Cactus, outperforms other models in counseling skills, highlighting its effectiveness and potential as a counseling agent.
arXiv Detail & Related papers (2024-07-03T13:41:31Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
This study investigates the efficacy of Large Language Models (LLMs) in interactive language therapy for high-functioning autistic adolescents.
LLMs present a novel opportunity to augment traditional psychological counseling methods.
arXiv Detail & Related papers (2023-11-12T07:55:39Z) - Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models [2.679689033125693]
We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce Large Language Models (LLMs) to reason about human emotional states.
This method is inspired by various psychotherapy approaches including Cognitive Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person Centered Therapy (PCT), and Reality Therapy (RT)
arXiv Detail & Related papers (2023-11-02T02:21:39Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Inducing anxiety in large language models can induce bias [47.85323153767388]
We focus on twelve established large language models (LLMs) and subject them to a questionnaire commonly used in psychiatry.
Our results show that six of the latest LLMs respond robustly to the anxiety questionnaire, producing comparable anxiety scores to humans.
Anxiety-induction not only influences LLMs' scores on an anxiety questionnaire but also influences their behavior in a previously-established benchmark measuring biases such as racism and ageism.
arXiv Detail & Related papers (2023-04-21T16:29:43Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.