Data Augmentation for Cognitive Behavioral Therapy: Leveraging ERNIE Language Models using Artificial Intelligence
- URL: http://arxiv.org/abs/2506.23503v1
- Date: Mon, 30 Jun 2025 03:59:00 GMT
- Title: Data Augmentation for Cognitive Behavioral Therapy: Leveraging ERNIE Language Models using Artificial Intelligence
- Authors: Bosubabu Sambana, Kondreddygari Archana, Suram Indhra Sena Reddy, Shaik Meethaigar Jameer Basha, Shaik Karishma,
- Abstract summary: In today's digital age, individuals often express negative emotions on social media.<n>There is a significant gap in methodologies designed to analyze these cognitive pathways.<n> Cognitive Behavioral Therapy (CBT) framework leveraging acceptance, commitment and data augmentation to categorize and address both textual and visual content as positive or negative.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cognitive Behavioral Therapy (CBT) is a proven approach for addressing the irrational thought patterns associated with mental health disorders, but its effectiveness relies on accurately identifying cognitive pathways to provide targeted treatment. In today's digital age, individuals often express negative emotions on social media, where they may reveal cognitive distortions, and in severe cases, exhibit suicidal tendencies. However, there is a significant gap in methodologies designed to analyze these cognitive pathways, which could be critical for psychotherapists aiming to deliver timely and effective interventions in online environments. Cognitive Behavioral Therapy (CBT) framework leveraging acceptance, commitment and data augmentation to categorize and address both textual and visual content as positive or negative. Specifically, the system employs BERT, RoBERTa for Sentiment Analysis and T5, PEGASUS for Text Summarization, mT5 for Text Translation in Multiple Languages focusing on detecting negative emotions and cognitive distortions within social media data. While existing models are primarily designed to identify negative thoughts, the proposed system goes beyond this by predicting additional negative side effects and other potential mental health disorders likes Phobias, Eating Disorders. This enhancement allows for a more comprehensive understanding and intervention strategy, offering psychotherapists a powerful tool for early detection and treatment of various psychological issues.
Related papers
- Reframe Your Life Story: Interactive Narrative Therapist and Innovative Moment Assessment with Large Language Models [92.93521294357058]
Narrative therapy helps individuals transform problematic life stories into empowering alternatives.<n>Current approaches lack realism in specialized psychotherapy and fail to capture therapeutic progression over time.<n>Int (Interactive Narrative Therapist) simulates expert narrative therapists by planning therapeutic stages, guiding reflection levels, and generating contextually appropriate expert-like responses.
arXiv Detail & Related papers (2025-07-27T11:52:09Z) - Bridging Cognition and Emotion: Empathy-Driven Multimodal Misinformation Detection [56.644686934050576]
Social media has become a major conduit for information dissemination, yet it also facilitates the rapid spread of misinformation.<n>Traditional misinformation detection methods primarily focus on surface-level features, overlooking the crucial roles of human empathy in the propagation process.<n>We propose the Dual-Aspect Empathy Framework (DAE), which integrates cognitive and emotional empathy to analyze misinformation from both the creator and reader perspectives.
arXiv Detail & Related papers (2025-04-24T07:48:26Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
Large language models (LLMs) have been validated, providing new possibilities for psychological assistance therapy.
Many concerns have been raised by mental health experts regarding the use of LLMs for therapy.
Four LLM variants with excellent performance on natural language processing are evaluated.
arXiv Detail & Related papers (2024-07-25T03:01:47Z) - AI-Enhanced Cognitive Behavioral Therapy: Deep Learning and Large Language Models for Extracting Cognitive Pathways from Social Media Texts [27.240795549935463]
We gathered data from social media and established the task of extracting cognitive pathways.
We structured a text summarization task to help psychotherapists quickly grasp the essential information.
Our experiments evaluate the performance of deep learning and large language models.
arXiv Detail & Related papers (2024-04-17T14:55:27Z) - Enhancing Depression-Diagnosis-Oriented Chat with Psychological State Tracking [27.96718892323191]
Depression-diagnosis-oriented chat aims to guide patients in self-expression to collect key symptoms for depression detection.
Recent work focuses on combining task-oriented dialogue and chitchat to simulate the interview-based depression diagnosis.
No explicit framework has been explored to guide the dialogue, which results in some useless communications.
arXiv Detail & Related papers (2024-03-12T07:17:01Z) - Computational Analysis of Stress, Depression and Engagement in Mental Health: A Survey [62.31381724639944]
Stress and depression are interrelated and together they impact engagement in daily tasks.<n>This survey is the first to simultaneously explore computational methods for analyzing stress, depression and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
We unveil the Helping and Empowering through Adaptive Language in Mental Enhancement (HealMe) model.
This novel cognitive reframing therapy method effectively addresses deep-rooted negative thoughts and fosters rational, balanced perspectives.
We adopt the first comprehensive and expertly crafted psychological evaluation metrics, specifically designed to rigorously assess the performance of cognitive reframing.
arXiv Detail & Related papers (2024-02-26T09:10:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Illuminate: A novel approach for depression detection with explainable
analysis and proactive therapy using prompt engineering [0.0]
This paper introduces a novel paradigm for depression detection and treatment using advanced Large Language Models (LLMs): Generative Pre-trained Transformer 4 (GPT-4), Llama 2 chat, and Gemini.
LLMs are fine-tuned with specialized prompts to diagnose, explain, and suggest therapeutic interventions for depression.
arXiv Detail & Related papers (2024-02-05T06:08:06Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
We present MET, a learning-based algorithm for perceiving a human's level of engagement from videos.
We release a new dataset, MEDICA, for mental health patient engagement detection.
arXiv Detail & Related papers (2020-11-17T15:18:38Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
We propose an automated framework for body language based emotion recognition starting from regular RGB videos.
In collaboration with psychologists, we extend the framework for psychiatric symptom prediction.
Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set.
arXiv Detail & Related papers (2020-10-30T18:45:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.