How Well Do Multi-modal LLMs Interpret CT Scans? An Auto-Evaluation Framework for Analyses
- URL: http://arxiv.org/abs/2403.05680v2
- Date: Tue, 18 Jun 2024 12:43:18 GMT
- Title: How Well Do Multi-modal LLMs Interpret CT Scans? An Auto-Evaluation Framework for Analyses
- Authors: Qingqing Zhu, Benjamin Hou, Tejas S. Mathai, Pritam Mukherjee, Qiao Jin, Xiuying Chen, Zhizheng Wang, Ruida Cheng, Ronald M. Summers, Zhiyong Lu,
- Abstract summary: This study introduces a novel evaluation framework, named GPTRadScore''
It assesses the capabilities of multi-modal LLMs, such as GPT-4 with Vision (GPT-4V), Gemini Pro Vision, LLaVA-Med, and RadFM, in generating descriptions for prospectively-identified findings.
By employing a decomposition technique based on GPT-4, GPTRadScore compares these generated descriptions with gold-standard report sentences, analyzing their accuracy in terms of body part, location, and type of finding.
- Score: 14.884877292068351
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatically interpreting CT scans can ease the workload of radiologists. However, this is challenging mainly due to the scarcity of adequate datasets and reference standards for evaluation. This study aims to bridge this gap by introducing a novel evaluation framework, named ``GPTRadScore''. This framework assesses the capabilities of multi-modal LLMs, such as GPT-4 with Vision (GPT-4V), Gemini Pro Vision, LLaVA-Med, and RadFM, in generating descriptions for prospectively-identified findings. By employing a decomposition technique based on GPT-4, GPTRadScore compares these generated descriptions with gold-standard report sentences, analyzing their accuracy in terms of body part, location, and type of finding. Evaluations demonstrated a high correlation with clinician assessments and highlighted its potential over traditional metrics, such as BLEU, METEOR, and ROUGE. Furthermore, to contribute to future studies, we plan to release a benchmark dataset annotated by clinicians. Using GPTRadScore, we found that while GPT-4V and Gemini Pro Vision fare better, their performance revealed significant areas for improvement, primarily due to limitations in the dataset used for training these models. To demonstrate this potential, RadFM was fine-tuned and it resulted in significant accuracy improvements: location accuracy rose from 3.41\% to 12.8\%, body part accuracy from 29.12\% to 53\%, and type accuracy from 9.24\% to 30\%, thereby validating our hypothesis.
Related papers
- Preference Fine-Tuning for Factuality in Chest X-Ray Interpretation Models Without Human Feedback [10.826651024680169]
Radiologists play a crucial role by translating medical images into medical reports.
While automated approaches using vision-language models (VLMs) show promise as assistants, they require exceptionally high accuracy.
We propose a scalable automated preference alignment technique for VLMs in radiology, focusing on chest X-ray (CXR) report generation.
arXiv Detail & Related papers (2024-10-09T16:07:11Z) - LLM-RadJudge: Achieving Radiologist-Level Evaluation for X-Ray Report Generation [37.20505633019773]
evaluating generated radiology reports is crucial for the development of radiology AI.
This study proposes a novel evaluation framework using large language models (LLMs) to compare radiology reports for assessment.
arXiv Detail & Related papers (2024-04-01T09:02:12Z) - Leveraging Professional Radiologists' Expertise to Enhance LLMs'
Evaluation for Radiology Reports [22.599250713630333]
Our proposed method synergizes the expertise of professional radiologists with Large Language Models (LLMs)
Our approach aligns LLM evaluations with radiologist standards, enabling detailed comparisons between human and AI generated reports.
Experimental results show that our "Detailed GPT-4 (5-shot)" model achieves a 0.48 score, outperforming the METEOR metric by 0.19.
arXiv Detail & Related papers (2024-01-29T21:24:43Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instruct can acquire pointwise grading critiques with pseudo references and revise these critiques via multi-path prompting.
CritiqueLLM is empirically shown to outperform ChatGPT and all the open-source baselines.
arXiv Detail & Related papers (2023-11-30T16:52:42Z) - GPT4Vis: What Can GPT-4 Do for Zero-shot Visual Recognition? [82.40761196684524]
This paper centers on the evaluation of GPT-4's linguistic and visual capabilities in zero-shot visual recognition tasks.
We conduct extensive experiments to evaluate GPT-4's performance across images, videos, and point clouds.
Our findings show that GPT-4, enhanced with rich linguistic descriptions, significantly improves zero-shot recognition.
arXiv Detail & Related papers (2023-11-27T11:29:10Z) - A Systematic Evaluation of GPT-4V's Multimodal Capability for Medical
Image Analysis [87.25494411021066]
GPT-4V's multimodal capability for medical image analysis is evaluated.
It is found that GPT-4V excels in understanding medical images and generates high-quality radiology reports.
It is found that its performance for medical visual grounding needs to be substantially improved.
arXiv Detail & Related papers (2023-10-31T11:39:09Z) - Prometheus: Inducing Fine-grained Evaluation Capability in Language
Models [66.12432440863816]
We propose Prometheus, a fully open-source Large Language Model (LLM) that is on par with GPT-4's evaluation capabilities.
Prometheus scores a Pearson correlation of 0.897 with human evaluators when evaluating with 45 customized score rubrics.
Prometheus achieves the highest accuracy on two human preference benchmarks.
arXiv Detail & Related papers (2023-10-12T16:50:08Z) - Improving accuracy of GPT-3/4 results on biomedical data using a
retrieval-augmented language model [0.0]
Large language models (LLMs) have made significant advancements in natural language processing (NLP)
Training LLMs on focused corpora poses computational challenges.
An alternative approach is to use a retrieval-augmentation (RetA) method tested in a specific domain.
OpenAI's GPT-3, GPT-4, Bing's Prometheus, and a custom RetA model were compared using 19 questions on diffuse large B-cell lymphoma (DLBCL) disease.
arXiv Detail & Related papers (2023-05-26T17:33:05Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Data-Efficient Vision Transformers for Multi-Label Disease
Classification on Chest Radiographs [55.78588835407174]
Vision Transformers (ViTs) have not been applied to this task despite their high classification performance on generic images.
ViTs do not rely on convolutions but on patch-based self-attention and in contrast to CNNs, no prior knowledge of local connectivity is present.
Our results show that while the performance between ViTs and CNNs is on par with a small benefit for ViTs, DeiTs outperform the former if a reasonably large data set is available for training.
arXiv Detail & Related papers (2022-08-17T09:07:45Z) - Deep learning in magnetic resonance prostate segmentation: A review and
a new perspective [4.453410156617238]
We review the state-of-the-art deep learning algorithms in MR prostate segmentation.
We provide insights to the field by discussing their limitations and strengths.
We propose an optimised 2D U-Net for MR prostate segmentation.
arXiv Detail & Related papers (2020-11-16T08:58:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.