GEMA-Score: Granular Explainable Multi-Agent Score for Radiology Report Evaluation
- URL: http://arxiv.org/abs/2503.05347v1
- Date: Fri, 07 Mar 2025 11:42:22 GMT
- Title: GEMA-Score: Granular Explainable Multi-Agent Score for Radiology Report Evaluation
- Authors: Zhenxuan Zhang, Kinhei Lee, Weihang Deng, Huichi Zhou, Zihao Jin, Jiahao Huang, Zhifan Gao, Dominic C Marshall, Yingying Fang, Guang Yang,
- Abstract summary: We propose a Granular Explainable Multi-Agent Score (GEMA-Score) in this paper.<n>GEMA-Score conducts both objective quantification and subjective evaluation through a large language model-based multi-agent workflow.<n>Experiments validate that GEMA-Score achieves the highest correlation with human expert evaluations on a public dataset.
- Score: 8.071354543390274
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic medical report generation supports clinical diagnosis, reduces the workload of radiologists, and holds the promise of improving diagnosis consistency. However, existing evaluation metrics primarily assess the accuracy of key medical information coverage in generated reports compared to human-written reports, while overlooking crucial details such as the location and certainty of reported abnormalities. These limitations hinder the comprehensive assessment of the reliability of generated reports and pose risks in their selection for clinical use. Therefore, we propose a Granular Explainable Multi-Agent Score (GEMA-Score) in this paper, which conducts both objective quantification and subjective evaluation through a large language model-based multi-agent workflow. Our GEMA-Score parses structured reports and employs NER-F1 calculations through interactive exchanges of information among agents to assess disease diagnosis, location, severity, and uncertainty. Additionally, an LLM-based scoring agent evaluates completeness, readability, and clinical terminology while providing explanatory feedback. Extensive experiments validate that GEMA-Score achieves the highest correlation with human expert evaluations on a public dataset, demonstrating its effectiveness in clinical scoring (Kendall coefficient = 0.70 for Rexval dataset and Kendall coefficient = 0.54 for RadEvalX dataset). The anonymous project demo is available at: https://github.com/Zhenxuan-Zhang/GEMA_score.
Related papers
- EchoQA: A Large Collection of Instruction Tuning Data for Echocardiogram Reports [0.0]
We introduce a novel question-answering (QA) dataset using echocardiogram reports sourced from the Medical Information Mart for Intensive Care database.<n>This dataset is specifically designed to enhance QA systems in cardiology, consisting of 771,244 QA pairs addressing a wide array of cardiac abnormalities and their severity.<n>We compare large language models (LLMs), including open-source and biomedical-specific models for zero-shot evaluation, and closed-source models for zero-shot and three-shot evaluation.
arXiv Detail & Related papers (2025-03-04T07:45:45Z) - Towards Interpretable Radiology Report Generation via Concept Bottlenecks using a Multi-Agentic RAG [1.9374282535132377]
This study enhances interpretability in Chest X-ray (CXR) classification by using concept bottleneck models (CBMs) and a multi-agent Retrieval-Augmented Generation (RAG) system for report generation.<n>By modeling relationships between visual features and clinical concepts, we create interpretable concept vectors that guide a multi-agent RAG system to generate radiology reports.
arXiv Detail & Related papers (2024-12-20T17:33:50Z) - AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
Radiologists are tasked with interpreting a large number of images in a daily base, with the responsibility of generating corresponding reports.
This demanding workload elevates the risk of human error, potentially leading to treatment delays, increased healthcare costs, revenue loss, and operational inefficiencies.
We initiate a series of work on grounded Automatic Report Generation (AutoRG)
This system supports the delineation of brain structures, the localization of anomalies, and the generation of well-organized findings.
arXiv Detail & Related papers (2024-07-23T17:50:00Z) - RaTEScore: A Metric for Radiology Report Generation [59.37561810438641]
This paper introduces a novel, entity-aware metric, as Radiological Report (Text) Evaluation (RaTEScore)
RaTEScore emphasizes crucial medical entities such as diagnostic outcomes and anatomical details, and is robust against complex medical synonyms and sensitive to negation expressions.
Our evaluations demonstrate that RaTEScore aligns more closely with human preference than existing metrics, validated both on established public benchmarks and our newly proposed RaTE-Eval benchmark.
arXiv Detail & Related papers (2024-06-24T17:49:28Z) - The Impact of Auxiliary Patient Data on Automated Chest X-Ray Report Generation and How to Incorporate It [12.61239008314719]
This study investigates the integration of diverse patient data sources into multimodal language models for automated chest X-ray (CXR) report generation.<n>Utilising the MIMIC-CXR and MIMIC-IV-ED datasets, we incorporate detailed patient information such as vital signs, medicines, and clinical history to enhance diagnostic accuracy.
arXiv Detail & Related papers (2024-06-19T03:25:31Z) - MRScore: Evaluating Radiology Report Generation with LLM-based Reward System [39.54237580336297]
This paper introduces MRScore, an automatic evaluation metric tailored for radiology report generation by leveraging Large Language Models (LLMs)
To address this challenge, we collaborated with radiologists to develop a framework that guides LLMs for radiology report evaluation, ensuring alignment with human analysis.
Our experiments demonstrate MRScore's higher correlation with human judgments and superior performance in model selection compared to traditional metrics.
arXiv Detail & Related papers (2024-04-27T04:42:45Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Supervised Machine Learning Algorithm for Detecting Consistency between
Reported Findings and the Conclusions of Mammography Reports [66.89977257992568]
Mammography reports document the diagnosis of patients' conditions.
Many reports contain non-standard terms (non-BI-RADS descriptors) and incomplete statements.
Our aim was to develop a tool to detect such discrepancies by comparing the reported conclusions to those that would be expected based on the reported radiology findings.
arXiv Detail & Related papers (2022-02-28T08:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.