Mining Issue Trackers: Concepts and Techniques
- URL: http://arxiv.org/abs/2403.05716v2
- Date: Thu, 11 Jul 2024 17:30:02 GMT
- Title: Mining Issue Trackers: Concepts and Techniques
- Authors: Lloyd Montgomery, Clara Lüders, Walid Maalej,
- Abstract summary: Internal and external stakeholders report, manage, and discuss "issues"
An issue tracker is a software tool used by organisations to interact with users and manage various aspects of the software development lifecycle.
This chapter discusses four major use cases for algorithmically analysing issue data.
- Score: 6.99674326582747
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An issue tracker is a software tool used by organisations to interact with users and manage various aspects of the software development lifecycle. With the rise of agile methodologies, issue trackers have become popular in open and closed-source settings alike. Internal and external stakeholders report, manage, and discuss "issues", which represent different information such as requirements and maintenance tasks. Issue trackers can quickly become complex ecosystems, with dozens of projects, hundreds of users, thousands of issues, and often millions of issue evolutions. Finding and understanding the relevant issues for the task at hand and keeping an overview becomes difficult with time. Moreover, managing issue workflows for diverse projects becomes more difficult as organisations grow, and more stakeholders get involved. To help address these difficulties, software and requirements engineering research have suggested automated techniques based on mining issue tracking data. Given the vast amount of textual data in issue trackers, many of these techniques leverage natural language processing. This chapter discusses four major use cases for algorithmically analysing issue data to assist stakeholders with the complexity and heterogeneity of information in issue trackers. The chapter is accompanied by a follow-along demonstration package with JupyterNotebooks.
Related papers
- An Empirical Investigation on the Challenges in Scientific Workflow Systems Development [2.704899832646869]
This study examines interactions between developers and researchers on Stack Overflow (SO) and GitHub.
By analyzing issues, we identified 13 topics (e.g., Errors and Bug Fixing, Documentation, Dependencies) and discovered that data structures and operations is the most difficult.
We also found common topics between SO and GitHub, such as data structures and operations, task management, and workflow scheduling.
arXiv Detail & Related papers (2024-11-16T21:14:11Z) - GEMS: Generative Expert Metric System through Iterative Prompt Priming [18.0413505095456]
Non-experts can find it unintuitive to create effective measures or transform theories into context-specific metrics.
This technical report addresses this challenge by examining software communities within large software corporations.
We propose a prompt-engineering framework inspired by neural activities, demonstrating that generative models can extract and summarize theories.
arXiv Detail & Related papers (2024-10-01T17:14:54Z) - Visual Analysis of GitHub Issues to Gain Insights [2.9051263101214566]
This paper presents a prototype web application that generates visualizations to offer insights into issue timelines.
It focuses on the lifecycle of issues and depicts vital information to enhance users' understanding of development patterns.
arXiv Detail & Related papers (2024-07-30T15:17:57Z) - Understanding the Challenges of Deploying Live-Traceability Solutions [45.235173351109374]
SAFA.ai is a startup focusing on fine-tuning project-specific models that deliver automated traceability in a near real-time environment.
This paper describes the challenges that characterize commercializing software traceability and highlights possible future directions.
arXiv Detail & Related papers (2023-06-19T14:34:16Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Automotive Perception Software Development: An Empirical Investigation
into Data, Annotation, and Ecosystem Challenges [10.649193588119985]
Software that contains machine learning algorithms is an integral part of automotive perception.
The development of such software, specifically the training and validation of the machine learning components, require large annotated datasets.
An industry of data and annotation services has emerged to serve the development of such data-intensive automotive software components.
arXiv Detail & Related papers (2023-03-10T14:29:06Z) - A Transformer Framework for Data Fusion and Multi-Task Learning in Smart
Cities [99.56635097352628]
This paper proposes a Transformer-based AI system for emerging smart cities.
It supports virtually any input data and output task types present S&CCs.
It is demonstrated through learning diverse task sets representative of S&CC environments.
arXiv Detail & Related papers (2022-11-18T20:43:09Z) - Competency Problems: On Finding and Removing Artifacts in Language Data [50.09608320112584]
We argue that for complex language understanding tasks, all simple feature correlations are spurious.
We theoretically analyze the difficulty of creating data for competency problems when human bias is taken into account.
arXiv Detail & Related papers (2021-04-17T21:34:10Z) - Constraint Programming Algorithms for Route Planning Exploiting
Geometrical Information [91.3755431537592]
We present an overview of our current research activities concerning the development of new algorithms for route planning problems.
The research so far has focused in particular on the Euclidean Traveling Salesperson Problem (Euclidean TSP)
The aim is to exploit the results obtained also to other problems of the same category, such as the Euclidean Vehicle Problem (Euclidean VRP), in the future.
arXiv Detail & Related papers (2020-09-22T00:51:45Z) - Understanding What Software Engineers Are Working on -- The Work-Item
Prediction Challenge [0.0]
Understanding what a software engineer (a developer, an incident responder, a production engineer, etc.) is working on is a challenging problem.
In this paper, we explain the corresponding 'work-item prediction challenge' on the grounds of representative scenarios.
arXiv Detail & Related papers (2020-04-13T19:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.