論文の概要: Hybrid Quantum-inspired Resnet and Densenet for Pattern Recognition with
Completeness Analysis
- arxiv url: http://arxiv.org/abs/2403.05754v1
- Date: Sat, 9 Mar 2024 01:34:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 12:29:39.086610
- Title: Hybrid Quantum-inspired Resnet and Densenet for Pattern Recognition with
Completeness Analysis
- Title(参考訳): 完全性解析によるパターン認識のためのハイブリッド量子インスピレーション型ResnetとDensenet
- Authors: Andi Chen, Hua-Lei Yin, Zeng-Bing Chen, Shengjun Wu
- Abstract要約: ムーア後の時代は、優れたポテンシャルを持つ量子インスパイアされたニューラルネットワークの開発を加速させた。
本稿では,残差および高密度接続に根ざした2つのハイブリッド量子インスピレーションニューラルネットワークを提案する。
比較分析により、パラメータの複雑さが低いハイブリッドモデルは、純粋古典モデルの一般化能力に適合するだけでなく、パラメータ攻撃に対する様々な非対称雑音に対する抵抗性にも優れることが明らかとなった。
- 参考スコア(独自算出の注目度): 1.1470070927586018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the contemporary digital technology approaching, deep neural networks
are emerging as the foundational algorithm of the artificial intelligence boom.
Whereas, the evolving social demands have been emphasizing the necessity of
novel methodologies to substitute traditional neural networks. Concurrently,
the advent of the post-Moore era has spurred the development of
quantum-inspired neural networks with outstanding potentials at certain
circumstances. Nonetheless, a definitive evaluating system with detailed
metrics is tremendously vital and indispensable owing to the vague indicators
in comparison between the novel and traditional deep learning models at
present. Hence, to improve and evaluate the performances of the novel neural
networks more comprehensively in complex and unpredictable environments, we
propose two hybrid quantum-inspired neural networks which are rooted in
residual and dense connections respectively for pattern recognitions with
completeness representation theory for model assessment. Comparative analyses
against pure classical models with detailed frameworks reveal that our hybrid
models with lower parameter complexity not only match the generalization power
of pure classical models, but also outperform them notably in resistance to
parameter attacks with various asymmetric noises. Moreover, our hybrid models
indicate unique superiority to prevent gradient explosion problems through
theoretical argumentation. Eventually, We elaborate on the application
scenarios where our hybrid models are applicable and efficient, which paves the
way for their industrialization and commercialization.
- Abstract(参考訳): 現代のデジタル技術が近づくにつれて、人工知能ブームの基盤的アルゴリズムとしてディープニューラルネットワークが登場している。
一方で、進化する社会的要求は、従来のニューラルネットワークを置き換える新しい手法の必要性を強調している。
同時に、ポストムーア時代の到来は、特定の状況において優れたポテンシャルを持つ量子インスパイアされたニューラルネットワークの開発を促した。
それにもかかわらず、詳細なメトリクスを持つ決定的な評価システムは、現在の新しいディープラーニングモデルと従来のディープラーニングモデルとの比較において曖昧な指標のため、極めて重要かつ不可欠である。
そこで,新しいニューラルネットワークの性能を複雑で予測不能な環境においてより包括的に評価するために,モデル評価のための完全性表現理論を用いたパターン認識において,それぞれ残差と密接性に根ざした2つのハイブリッド量子インスパイアニューラルネットワークを提案する。
詳細なフレームワークを用いた純粋古典モデルに対する比較分析により、パラメータ複雑性の低いハイブリッドモデルが、純粋古典モデルの一般化力に匹敵するだけでなく、様々な非対称ノイズを伴うパラメータ攻撃に対する抵抗において特に優れることが明らかとなった。
さらに,我々のハイブリッドモデルは,理論的議論による勾配爆発問題を防止するために,特異な優位性を示す。
最終的には、当社のハイブリッドモデルが適用可能で効率的なアプリケーションシナリオを詳細に説明して、その産業化と商業化への道を開きます。
関連論文リスト
- Neural Residual Diffusion Models for Deep Scalable Vision Generation [17.931568104324985]
我々は,統一的かつ大規模に拡張可能なニューラルネットワーク残差拡散モデルフレームワーク(Neural-RDM)を提案する。
提案したニューラル残差モデルは、画像およびビデオ生成ベンチマークの最先端スコアを取得する。
論文 参考訳(メタデータ) (2024-06-19T04:57:18Z) - A method for quantifying the generalization capabilities of generative models for solving Ising models [5.699467840225041]
我々は、ハミング距離正規化器を用いて、VANと組み合わせた様々なネットワークアーキテクチャの一般化能力を定量化する。
フィードフォワードニューラルネットワーク,リカレントニューラルネットワーク,グラフニューラルネットワークなど,VANと組み合わせたネットワークアーキテクチャの数値実験を行う。
本手法は,大規模Isingモデルの解法において,最適なネットワークアーキテクチャを探索するニューラルネットワーク探索の分野を支援する上で,非常に重要である。
論文 参考訳(メタデータ) (2024-05-06T12:58:48Z) - Bayesian sparsification for deep neural networks with Bayesian model
reduction [0.6144680854063939]
我々は,モデルウェイトを刈り取るためのより効率的な代替手段として,ベイズモデルリダクション(BMR)の使用を提唱する。
BMRは、単純な(非階層的な)生成モデルの下での後方推定に基づいて、余剰モデル重みのポストホック除去を可能にする。
我々は、LeNetのような古典的なネットワークから、VisionやTransformers-Mixersのようなモダンなフレームワークまで、さまざまなディープラーニングアーキテクチャにおけるBMRの可能性について説明する。
論文 参考訳(メタデータ) (2023-09-21T14:10:47Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
スパースリカバリのためのモデルベースネットワークの一般化能力は、通常のReLUネットワークよりも優れていることを示す。
我々は,高一般化を保証したモデルベースネットワークの構築を可能にする実用的な設計規則を導出する。
論文 参考訳(メタデータ) (2023-04-19T16:39:44Z) - High Accuracy Uncertainty-Aware Interatomic Force Modeling with
Equivariant Bayesian Neural Networks [3.028098724882708]
原子間力学習のための新しいモンテカルロマルコフ連鎖サンプリングアルゴリズムを提案する。
さらに、NequIPアーキテクチャに基づくニューラルネットワークモデルを導入し、新しいサンプリングアルゴリズムと組み合わせることで、最先端の精度で予測が得られ、不確実性の優れた指標が得られることを示す。
論文 参考訳(メタデータ) (2023-04-05T10:39:38Z) - Maximum entropy exploration in contextual bandits with neural networks
and energy based models [63.872634680339644]
モデルには2つのクラスがあり、1つはニューラルネットワークを報酬推定器とし、もう1つはエネルギーベースモデルを示す。
両手法は、エネルギーベースモデルが最も優れた性能を持つ、よく知られた標準アルゴリズムより優れていることを示す。
これは、静的および動的設定でよく機能する新しいテクニックを提供し、特に連続的なアクション空間を持つ非線形シナリオに適している。
論文 参考訳(メタデータ) (2022-10-12T15:09:45Z) - Physically constrained neural networks to solve the inverse problem for
neuron models [0.29005223064604074]
システム生物学とシステム神経生理学は、生体医学科学における多くの重要な応用のための強力なツールである。
ディープニューラルネットワークの分野における最近の進歩は、非線形で普遍的な近似を定式化する可能性を示している。
論文 参考訳(メタデータ) (2022-09-24T12:51:15Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
生成モデルにおいて,プルーニングによりニューラルネットワークの一般化が向上することを示す。
また、プルーニングは、元のネットワークに比べて最大98%少ないパラメータで、精度を損なうことなく、最小かつ効率的なニューラルODE表現を見出すことを示した。
論文 参考訳(メタデータ) (2021-06-24T01:40:17Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Hyperbolic Neural Networks++ [66.16106727715061]
ニューラルネットワークの基本成分を1つの双曲幾何モデル、すなわちポアンカーの球モデルで一般化する。
実験により, 従来の双曲成分と比較してパラメータ効率が優れ, ユークリッド成分よりも安定性と性能が優れていた。
論文 参考訳(メタデータ) (2020-06-15T08:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。