論文の概要: Quantum Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2501.11174v1
- Date: Sun, 19 Jan 2025 21:24:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:55.191249
- Title: Quantum Latent Diffusion Models
- Title(参考訳): 量子潜在拡散モデル
- Authors: Francesca De Falco, Andrea Ceschini, Alessandro Sebastianelli, Bertrand Le Saux, Massimo Panella,
- Abstract要約: 本稿では,古典的潜伏拡散モデルの確立した考え方を活用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
この結果は、量子バージョンが生成した画像のより良い測定値を得ることによって証明されたように、量子バージョンを使用することの利点を示している。
- 参考スコア(独自算出の注目度): 65.16624577812436
- License:
- Abstract: The introduction of quantum concepts is increasingly making its way into generative machine learning models. However, while there are various implementations of quantum Generative Adversarial Networks, the integration of quantum elements into diffusion models remains an open and challenging task. In this work, we propose a potential version of a quantum diffusion model that leverages the established idea of classical latent diffusion models. This involves using a traditional autoencoder to reduce images, followed by operations with variational circuits in the latent space. To effectively assess the benefits brought by quantum computing, the images generated by the quantum latent diffusion model have been compared to those generated by a classical model with a similar number of parameters, evaluated in terms of quantitative metrics. The results demonstrate an advantage in using a quantum version, as evidenced by obtaining better metrics for the images generated by the quantum version compared to those obtained by the classical version. Furthermore, quantum models continue to outperform even when considering small percentages of the dataset for training, demonstrating the quantum's ability to extract features more effectively even in a few shot learning scenario.
- Abstract(参考訳): 量子の概念の導入は、生成機械学習モデルにますます浸透している。
しかし、量子生成適応ネットワークには様々な実装があるが、拡散モデルへの量子要素の統合はオープンで困難な課題である。
本研究では,古典的潜伏拡散モデルの確立した考え方を利用する量子拡散モデルの潜在的バージョンを提案する。
これには、従来のオートエンコーダを使用してイメージを削減し、次に潜時空間の変動回路で操作する。
量子コンピューティングがもたらす利点を効果的に評価するために、量子潜在拡散モデルによって生成された画像は、類似した数のパラメータを持つ古典的モデルによって生成された画像と比較され、定量的メトリクスの観点から評価されている。
この結果は、古典版に比べて、量子版が生成した画像の指標が良いことが証明されたように、量子版を使用することの利点を示している。
さらに、トレーニング用データセットの小さなパーセンテージを考慮しても、量子モデルはパフォーマンスが向上し続けており、数ショットの学習シナリオにおいても、より効果的に特徴を抽出する能力を示している。
関連論文リスト
- Hybrid Quantum-Classical Normalizing Flow [5.85475369017678]
パラメータ化量子回路に基づくハイブリッド量子古典正規化フロー(HQCNF)モデルを提案する。
我々は画像生成問題でモデルを検証した。
量子生成逆数ネットワーク(QGAN)のような他の量子生成モデルと比較して、我々のモデルはFr'echet 距離(FID)の低いスコアを得る。
論文 参考訳(メタデータ) (2024-05-22T16:37:22Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
本稿では,量子ハイブリッド拡散モデルの設計手法を提案する。
量子コンピューティングの優れた一般化と古典的ネットワークのモジュラリティを組み合わせた2つのハイブリダイゼーション手法を提案する。
論文 参考訳(メタデータ) (2024-02-25T16:57:51Z) - Quantum Denoising Diffusion Models [4.763438526927999]
2つの量子拡散モデルを導入し、それらの能力と古典的能力とをベンチマークする。
我々のモデルは、FID、SSIM、PSNRのパフォーマンス指標の点で、類似したパラメータ数を持つ古典モデルを上回る。
論文 参考訳(メタデータ) (2024-01-13T11:38:08Z) - Quantum sequential scattering model for quantum state learning [6.040584660207655]
我々は、量子散乱モデル(QSSM)を考案し、勾配スケールのシュミット位を持つ高次元逐次ターゲット状態の大規模なクラスに、消滅する問題を克服する。
我々の研究は、ターゲット状態における量子状態の性質である絡み合いの増大がより大きなスケールモデルを必要とすることを示しており、それによってモデルの学習性能と効率が低下する可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-10-11T18:31:40Z) - Quantum-Noise-Driven Generative Diffusion Models [1.6385815610837167]
実量子システムで実験的に検証できる3つの量子ノイズ駆動生成拡散モデルを提案する。
アイデアは、特にコヒーレンス、絡み合い、ノイズの間の非自明な相互作用を、ユニークな量子的特徴を活用することである。
我々の結果は、新しい量子インスパイアされた、あるいは量子ベースの生成拡散アルゴリズムの道を開くことが期待されている。
論文 参考訳(メタデータ) (2023-08-23T09:09:32Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Enhancing Generative Models via Quantum Correlations [1.6099403809839032]
確率分布から抽出したサンプルを用いた生成モデリングは教師なし機械学習の強力なアプローチである。
このような量子相関が生成モデリングの強力な資源となることを理論的に示す。
この分離を標準的な機械学習データセットで数値的にテストし、実用的な問題に耐えることを示します。
論文 参考訳(メタデータ) (2021-01-20T22:57:22Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。