Fast Disentangled Slim Tensor Learning for Multi-view Clustering
- URL: http://arxiv.org/abs/2411.07685v1
- Date: Tue, 12 Nov 2024 09:57:53 GMT
- Title: Fast Disentangled Slim Tensor Learning for Multi-view Clustering
- Authors: Deng Xu, Chao Zhang, Zechao Li, Chunlin Chen, Huaxiong Li,
- Abstract summary: We propose a new approach termed fast Disdentangle Slim Learning (DSTL) for multi-view clustering.
To alleviate the negative influence of feature redundancy, inspired by robust PCA, DSTL disentangles the latent low-dimensional representation into a semantic-unrelated part and a semantic-related part for each view.
Our proposed model is computationally efficient and can be solved effectively.
- Score: 28.950845031752927
- License:
- Abstract: Tensor-based multi-view clustering has recently received significant attention due to its exceptional ability to explore cross-view high-order correlations. However, most existing methods still encounter some limitations. (1) Most of them explore the correlations among different affinity matrices, making them unscalable to large-scale data. (2) Although some methods address it by introducing bipartite graphs, they may result in sub-optimal solutions caused by an unstable anchor selection process. (3) They generally ignore the negative impact of latent semantic-unrelated information in each view. To tackle these issues, we propose a new approach termed fast Disentangled Slim Tensor Learning (DSTL) for multi-view clustering . Instead of focusing on the multi-view graph structures, DSTL directly explores the high-order correlations among multi-view latent semantic representations based on matrix factorization. To alleviate the negative influence of feature redundancy, inspired by robust PCA, DSTL disentangles the latent low-dimensional representation into a semantic-unrelated part and a semantic-related part for each view. Subsequently, two slim tensors are constructed with tensor-based regularization. To further enhance the quality of feature disentanglement, the semantic-related representations are aligned across views through a consensus alignment indicator. Our proposed model is computationally efficient and can be solved effectively. Extensive experiments demonstrate the superiority and efficiency of DSTL over state-of-the-art approaches. The code of DSTL is available at https://github.com/dengxu-nju/DSTL.
Related papers
- Interpretable Multi-View Clustering Based on Anchor Graph Tensor Factorization [64.00146569922028]
Multi-view clustering methods based on anchor graph factorization lack adequate cluster interpretability for the decomposed matrix.
We address this limitation by using non-negative tensor factorization to decompose an anchor graph tensor that combines anchor graphs from multiple views.
arXiv Detail & Related papers (2024-04-01T03:23:55Z) - S^2MVTC: a Simple yet Efficient Scalable Multi-View Tensor Clustering [38.35594663863098]
Experimental results on six large-scale multi-view datasets demonstrate that S2MVTC significantly outperforms state-of-the-art algorithms in terms of clustering performance and CPU execution time.
arXiv Detail & Related papers (2024-03-14T05:00:29Z) - Deep Contrastive Multi-view Clustering under Semantic Feature Guidance [8.055452424643562]
We propose a multi-view clustering framework named Deep Contrastive Multi-view Clustering under Semantic feature guidance (DCMCS)
By minimizing instance-level contrastive loss weighted by semantic similarity, DCMCS adaptively weakens contrastive leaning between false negative pairs.
Experimental results on several public datasets demonstrate the proposed framework outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2024-03-09T02:33:38Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
We develop a novel multi-view clustering based on semi-non-negative tensor factorization (Semi-NTF)
Our model directly considers the between-view relationship and exploits the between-view complementary information.
In addition, we provide an optimization algorithm for the proposed method and prove mathematically that the algorithm always converges to the stationary KKT point.
arXiv Detail & Related papers (2023-03-29T14:54:19Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Subspace-Contrastive Multi-View Clustering [0.0]
We propose a novel Subspace-Contrastive Multi-View Clustering (SCMC) approach.
We employ view-specific auto-encoders to map the original multi-view data into compact features perceiving its nonlinear structures.
To demonstrate the effectiveness of the proposed model, we conduct a large number of comparative experiments on eight challenge datasets.
arXiv Detail & Related papers (2022-10-13T07:19:37Z) - Adaptively-weighted Integral Space for Fast Multiview Clustering [54.177846260063966]
We propose an Adaptively-weighted Integral Space for Fast Multiview Clustering (AIMC) with nearly linear complexity.
Specifically, view generation models are designed to reconstruct the view observations from the latent integral space.
Experiments conducted on several realworld datasets confirm the superiority of the proposed AIMC method.
arXiv Detail & Related papers (2022-08-25T05:47:39Z) - Improved Dual Correlation Reduction Network [40.792587861237166]
We propose a novel deep graph clustering algorithm termed Improved Dual Correlation Reduction Network (IDCRN)
By approximating the cross-view feature correlation matrix to an identity matrix, we reduce the redundancy between different dimensions of features.
We also avoid the collapsed representation caused by the over-smoothing issue in Graph Convolutional Networks (GCNs) through an introduced propagation regularization term.
arXiv Detail & Related papers (2022-02-25T07:48:32Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.