Enhancing Classification Performance via Reinforcement Learning for
Feature Selection
- URL: http://arxiv.org/abs/2403.05979v1
- Date: Sat, 9 Mar 2024 18:34:59 GMT
- Title: Enhancing Classification Performance via Reinforcement Learning for
Feature Selection
- Authors: Younes Ghazagh Jahed, Seyyed Ali Sadat Tavana
- Abstract summary: This study investigates the importance of effective feature selection in enhancing the performance of classification models.
By employing reinforcement learning (RL) algorithms, specifically Q-learning (QL) and SARSA learning, this paper addresses the feature selection challenge.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature selection plays a crucial role in improving predictive accuracy by
identifying relevant features while filtering out irrelevant ones. This study
investigates the importance of effective feature selection in enhancing the
performance of classification models. By employing reinforcement learning (RL)
algorithms, specifically Q-learning (QL) and SARSA learning, this paper
addresses the feature selection challenge. Using the Breast Cancer Coimbra
dataset (BCCDS) and three normalization methods (Min-Max, l1, and l2), the
study evaluates the performance of these algorithms. Results show that
QL@Min-Max and SARSA@l2 achieve the highest classification accuracies, reaching
87% and 88%, respectively. This highlights the effectiveness of RL-based
feature selection methods in optimizing classification tasks, contributing to
improved model accuracy and efficiency.
Related papers
- Large-scale Multi-objective Feature Selection: A Multi-phase Search Space Shrinking Approach [0.27624021966289597]
Feature selection is a crucial step in machine learning, especially for high-dimensional datasets.
This paper proposes a novel large-scale multi-objective evolutionary algorithm based on the search space shrinking, termed LMSSS.
The effectiveness of the proposed algorithm is demonstrated through comprehensive experiments on 15 large-scale datasets.
arXiv Detail & Related papers (2024-10-13T23:06:10Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - A Contrast Based Feature Selection Algorithm for High-dimensional Data
set in Machine Learning [9.596923373834093]
We propose a novel filter feature selection method, ContrastFS, which selects discriminative features based on the discrepancies features shown between different classes.
We validate effectiveness and efficiency of our approach on several widely studied benchmark datasets, results show that the new method performs favorably with negligible computation.
arXiv Detail & Related papers (2024-01-15T05:32:35Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Robust Learning with Progressive Data Expansion Against Spurious
Correlation [65.83104529677234]
We study the learning process of a two-layer nonlinear convolutional neural network in the presence of spurious features.
Our analysis suggests that imbalanced data groups and easily learnable spurious features can lead to the dominance of spurious features during the learning process.
We propose a new training algorithm called PDE that efficiently enhances the model's robustness for a better worst-group performance.
arXiv Detail & Related papers (2023-06-08T05:44:06Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Fair Feature Subset Selection using Multiobjective Genetic Algorithm [0.0]
We present a feature subset selection approach that improves both fairness and accuracy objectives.
We use statistical disparity as a fairness metric and F1-Score as a metric for model performance.
Our experiments on the most commonly used fairness benchmark datasets show that using the evolutionary algorithm we can effectively explore the trade-off between fairness and accuracy.
arXiv Detail & Related papers (2022-04-30T22:51:19Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - On the utility of power spectral techniques with feature selection
techniques for effective mental task classification in noninvasive BCI [19.19039983741124]
This paper proposes an approach to select relevant and non-redundant spectral features for the mental task classification.
The findings demonstrate substantial improvements in the performance of the learning model for mental task classification.
arXiv Detail & Related papers (2021-11-16T00:27:53Z) - Automated Human Activity Recognition by Colliding Bodies
Optimization-based Optimal Feature Selection with Recurrent Neural Network [0.0]
Human Activity Recognition (HAR) is considered to be an efficient model in pervasive computation from sensor readings.
This paper tempts to implement the HAR system using deep learning with the data collected from smart sensors that are publicly available in the UC Irvine Machine Learning Repository (UCI)
arXiv Detail & Related papers (2020-10-07T10:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.