論文の概要: Persian Slang Text Conversion to Formal and Deep Learning of Persian Short Texts on Social Media for Sentiment Classification
- arxiv url: http://arxiv.org/abs/2403.06023v2
- Date: Tue, 3 Sep 2024 20:09:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-07 03:42:07.519170
- Title: Persian Slang Text Conversion to Formal and Deep Learning of Persian Short Texts on Social Media for Sentiment Classification
- Title(参考訳): センティメント分類のためのソーシャルメディア上のペルシャ短文の形式的・深層学習へのペルシア語スラングテキスト変換
- Authors: Mohsen Khazeni, Mohammad Heydari, Amir Albadvi,
- Abstract要約: ペルシャ・スラング・コンバータ(ペルシア語: Slang Converter)は、会話テキストを形式に変換するツールである。
さまざまなソーシャルネットワークや映画のサブタイトル(会話テキストなど)から1000万件のラベルのないテキストが、教師なしモデルのトレーニングに使用されている。
ポジティブ、ネガティブ、中立なラベルを持つInstagramユーザーのコメントから6万件のテキストが、感情分類モデルをトレーニングするための教師付きデータと見なされている。
- 参考スコア(独自算出の注目度): 0.7373617024876725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The lack of a suitable tool for the analysis of conversational texts in the Persian language has made various analyses of these texts, including Sentiment Analysis, difficult. In this research, we tried to make the understanding of these texts easier for the machine by providing PSC, Persian Slang Converter, a tool for converting conversational texts into formal ones, and by using the most up-to-date and best deep learning methods along with the PSC, the sentiment learning of short Persian language texts for the machine in a better way. be made More than 10 million unlabeled texts from various social networks and movie subtitles (as Conversational texts) and about 10 million news texts (as formal texts) have been used for training unsupervised models and formal implementation of the tool. 60,000 texts from the comments of Instagram social network users with positive, negative, and neutral labels are considered supervised data for training the emotion classification model of short texts. Using the formal tool, 57% of the words of the corpus of conversation were converted. Finally, by using the formalizer, FastText model, and deep LSTM network, an accuracy of 81.91 was obtained on the test data.
- Abstract(参考訳): ペルシア語における会話テキストの分析に適したツールが欠如していることは、センチメント分析など、これらのテキストの分析を困難にしている。
本研究では,PSC,ペルシャ・スラング・コンバータ,対話型テキストを形式的テキストに変換するツールを提供することにより,これらのテキストの理解を機械にとって容易なものにすることを試みた。
さまざまなソーシャルネットワークや映画のサブタイトル(会話テキスト)から1000万以上の未ラベルのテキストが作成され、(公式テキストとして)約1000万のニューステキストが、教師なしモデルのトレーニングやツールの正式な実装に使用されている。
短いテキストの感情分類モデルをトレーニングするための教師付きデータとして,肯定的,否定的,中立的なラベルを持つInstagramユーザのコメントから6万件のテキストが検討されている。
フォーマルツールを用いて、会話のコーパスの57%が変換された。
最後に、フォーマル化器、FastTextモデル、深層LSTMネットワークを用いて、テストデータから81.91の精度を得た。
関連論文リスト
- FarSSiBERT: A Novel Transformer-based Model for Semantic Similarity Measurement of Persian Social Networks Informal Texts [0.0]
本稿では,ソーシャルメディアからペルシャの非公式短文間の意味的類似性を測定するための,トランスフォーマーに基づく新しいモデルを提案する。
これは、約9900万のペルシア語の非公式な短文をソーシャルネットワークから事前訓練しており、ペルシア語の一種である。
提案手法はPearsonとSpearmanの係数基準でParsBERT, laBSE, multilingual BERTより優れていた。
論文 参考訳(メタデータ) (2024-07-27T05:04:49Z) - MultiSocial: Multilingual Benchmark of Machine-Generated Text Detection of Social-Media Texts [0.6053347262128919]
MultiSocial データセットには 472,097 のテキストが含まれており、そのうち約58k が人文で書かれている。
このベンチマークを用いて、ゼロショットの既存の検出手法と微調整形式を比較した。
以上の結果から,微調整された検出器はソーシャルメディア上でのトレーニングに問題はないことが示唆された。
論文 参考訳(メタデータ) (2024-06-18T12:26:09Z) - Text Grouping Adapter: Adapting Pre-trained Text Detector for Layout Analysis [52.34110239735265]
本稿では,事前学習したテキスト検出装置のレイアウト解析を学習するためのモジュールであるText Grouping Adapter (TGA)を提案する。
我々の総合的な実験は、凍結した事前学習モデルであっても、TGAを様々な事前学習されたテキスト検出器やテキストスポッターに組み込むことで、より優れたレイアウト解析性能が得られることを示した。
論文 参考訳(メタデータ) (2024-05-13T05:48:35Z) - Emotion Classification in Short English Texts using Deep Learning
Techniques [0.0]
本研究は,英語短文の感情を識別する深層学習手法の徹底的な検討を行う。
ディープラーニングアプローチでは、より優れた精度を達成するために、トランスファーラーニングとワード埋め込み(特にBERT)を採用している。
Small EnglishEmotionsデータセットは、5つの主要な感情カテゴリーに注釈付けされた6372種類の短い英文からなる。
論文 参考訳(メタデータ) (2024-02-25T09:17:22Z) - Copy Is All You Need [66.00852205068327]
既存のテキストコレクションからテキストセグメントを段階的にコピーするテキスト生成を定式化する。
提案手法は, 自動評価と人的評価の両方により, より優れた生成品質を実現する。
当社のアプローチでは,より大規模なテキストコレクションにスケールアップすることで,さらなるパフォーマンス向上を実現しています。
論文 参考訳(メタデータ) (2023-07-13T05:03:26Z) - Distinguishing Human Generated Text From ChatGPT Generated Text Using
Machine Learning [0.251657752676152]
本稿では,人間のテキストからChatGPT配信されたテキストを識別する機械学習ベースのソリューションを提案する。
我々は、提案したモデルをKaggleデータセット上でテストし、そのうち5,204のテキストが人間によって書かれ、ニュースやソーシャルメディアから収集された1万のテキストからなる。
GPT-3.5で生成されたコーパスでは,提案アルゴリズムの精度は77%である。
論文 参考訳(メタデータ) (2023-05-26T09:27:43Z) - Code-Switching Text Generation and Injection in Mandarin-English ASR [57.57570417273262]
業界で広く使われているストリーミングモデルTransformer-Transducer(T-T)の性能向上のためのテキスト生成とインジェクションについて検討する。
まず、コードスイッチングテキストデータを生成し、テキスト-to-Speech(TTS)変換または暗黙的に音声とテキストの潜在空間を結び付けることによって、T-Tモデルに生成されたテキストを明示的に注入する戦略を提案する。
実際のマンダリン・イングリッシュ音声の1,800時間を含むデータセットを用いて訓練したT-Tモデルの実験結果から,生成したコードスイッチングテキストを注入する手法により,T-Tモデルの性能が著しく向上することが示された。
論文 参考訳(メタデータ) (2023-03-20T09:13:27Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
本稿では,シーンテキストを効果的に表現できる弱教師付き事前学習手法を提案する。
本ネットワークは,画像エンコーダと文字認識型テキストエンコーダから構成され,視覚的特徴とテキスト的特徴を抽出する。
実験により、事前訓練されたモデルは、重みを他のテキスト検出やスポッティングネットワークに転送しながら、Fスコアを+2.5%、+4.8%改善することが示された。
論文 参考訳(メタデータ) (2022-03-08T08:10:45Z) - Leveraging Pre-trained Language Model for Speech Sentiment Analysis [58.78839114092951]
本研究では、事前学習された言語モデルを用いて、文章の感情情報を学習し、音声の感情分析を行う。
本稿では,言語モデルを用いた擬似ラベルに基づく半教師付き訓練戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T20:15:21Z) - The Challenges of Persian User-generated Textual Content: A Machine
Learning-Based Approach [0.0]
この研究は、ペルシャのユーザー生成テキストコンテンツがもたらすハードルに対処するために機械学習ベースのアプローチを適用します。
提示されたアプローチは、ペルシア語の感情分析を行うために機械翻訳データセットを使用する。
実験の結果は、これまでの試みとは対照的に、有望な最先端のパフォーマンスを示しています。
論文 参考訳(メタデータ) (2021-01-20T11:57:59Z) - Text Perceptron: Towards End-to-End Arbitrary-Shaped Text Spotting [49.768327669098674]
テキストパーセプトロン(Text Perceptron)という,エンドツーエンドのトレーニング可能なテキストスポッティング手法を提案する。
まず、テキスト読解順序と境界情報を学ぶ効率的なセグメンテーションベースのテキスト検出器を用いる。
次に、検出された特徴領域を正規形態に変換するために、新しい形状変換モジュール(STM)を設計する。
論文 参考訳(メタデータ) (2020-02-17T08:07:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。