論文の概要: Emotion Classification in Short English Texts using Deep Learning
Techniques
- arxiv url: http://arxiv.org/abs/2402.16034v2
- Date: Sun, 10 Mar 2024 15:58:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 14:00:54.638057
- Title: Emotion Classification in Short English Texts using Deep Learning
Techniques
- Title(参考訳): 深層学習手法を用いた短文の感情分類
- Authors: Siddhanth Bhat
- Abstract要約: 本研究は,英語短文の感情を識別する深層学習手法の徹底的な検討を行う。
ディープラーニングアプローチでは、より優れた精度を達成するために、トランスファーラーニングとワード埋め込み(特にBERT)を採用している。
Small EnglishEmotionsデータセットは、5つの主要な感情カテゴリーに注釈付けされた6372種類の短い英文からなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting emotions in limited text datasets from under-resourced languages
presents a formidable obstacle, demanding specialized frameworks and
computational strategies. This study conducts a thorough examination of deep
learning techniques for discerning emotions in short English texts. Deep
learning approaches employ transfer learning and word embedding, notably BERT,
to attain superior accuracy. To evaluate these methods, we introduce the
"SmallEnglishEmotions" dataset, comprising 6372 varied short English texts
annotated with five primary emotion categories. Our experiments reveal that
transfer learning and BERT-based text embedding outperform alternative methods
in accurately categorizing the text in the dataset.
- Abstract(参考訳): リソース不足の言語から限られたテキストデータセット内の感情を検出することは、特別なフレームワークと計算戦略を要求する、恐ろしい障害となる。
本研究は,英語短文の感情を識別する深層学習手法の徹底的な検討を行う。
ディープラーニングアプローチでは、より優れた精度を達成するために、転送学習と単語埋め込み(特にBERT)を採用している。
これらの方法を評価するために,5つの主感情カテゴリを付記した,6372種類の短い英文テキストからなる「small englishemotions」データセットを紹介する。
実験の結果, 転送学習とBERTベースのテキスト埋め込みは, データセット中のテキストを正確に分類するための代替手法よりも優れていることがわかった。
関連論文リスト
- BERT or FastText? A Comparative Analysis of Contextual as well as Non-Contextual Embeddings [0.4194295877935868]
埋め込みの選択は、NLPタスクのパフォーマンス向上に重要な役割を果たす。
本研究では,Marathi言語固有のNLP分類タスクに,コンテキストBERTベース,非コンテキストBERTベース,FastTextベースの様々な埋め込み技術が与える影響について検討する。
論文 参考訳(メタデータ) (2024-11-26T18:25:57Z) - Large Language Models on Fine-grained Emotion Detection Dataset with Data Augmentation and Transfer Learning [1.124958340749622]
本研究の目的は,テキスト中の微妙な感情を検出することの課題に対処することである。
この発見は、テキストにおける感情検出の課題に対処するための貴重な洞察を提供する。
論文 参考訳(メタデータ) (2024-03-10T06:30:54Z) - Text Classification: A Perspective of Deep Learning Methods [0.0679877553227375]
本稿では,テキスト分類作業に必要な重要なステップを含む,深層学習に基づくテキスト分類アルゴリズムを提案する。
論文の最後には、異なる深層学習テキスト分類法を比較し、要約する。
論文 参考訳(メタデータ) (2023-09-24T21:49:51Z) - Textual Entailment Recognition with Semantic Features from Empirical
Text Representation [60.31047947815282]
テキストが仮説を包含するのは、仮説の真の価値がテキストに従う場合に限る。
本稿では,テキストと仮説のテキストの包含関係を同定する新しい手法を提案する。
本手法では,テキスト・ハイブリッド・ペア間の意味的含意関係を識別できる要素ワイド・マンハッタン距離ベクトルベースの特徴を用いる。
論文 参考訳(メタデータ) (2022-10-18T10:03:51Z) - Language Matters: A Weakly Supervised Pre-training Approach for Scene
Text Detection and Spotting [69.77701325270047]
本稿では,シーンテキストを効果的に表現できる弱教師付き事前学習手法を提案する。
本ネットワークは,画像エンコーダと文字認識型テキストエンコーダから構成され,視覚的特徴とテキスト的特徴を抽出する。
実験により、事前訓練されたモデルは、重みを他のテキスト検出やスポッティングネットワークに転送しながら、Fスコアを+2.5%、+4.8%改善することが示された。
論文 参考訳(メタデータ) (2022-03-08T08:10:45Z) - Leveraging Sentiment Analysis Knowledge to Solve Emotion Detection Tasks [11.928873764689458]
本稿では,大規模データセット上での感情検出タスクを改善するために,適応層を融合したトランスフォーマーモデルを提案する。
また,CMU-MOSEIの感情認識には,テキストモダリティのみを用いながら,最先端の結果が得られた。
論文 参考訳(メタデータ) (2021-11-05T20:06:58Z) - Deep Learning for Text Style Transfer: A Survey [71.8870854396927]
テキストスタイル転送は、生成したテキストの特定の属性を制御することを目的として、自然言語生成において重要なタスクである。
2017年の最初のニューラルテキストスタイル転送作業以降,100以上の代表的な記事を対象とした,ニューラルテキストスタイル転送の研究の体系的な調査を行う。
タスクの定式化、既存のデータセットとサブタスク、評価、並列データと非並列データの存在下での豊富な方法論について論じる。
論文 参考訳(メタデータ) (2020-11-01T04:04:43Z) - Interactive Fiction Game Playing as Multi-Paragraph Reading
Comprehension with Reinforcement Learning [94.50608198582636]
対話型フィクション(IF)ゲームと実際の自然言語テキストは、言語理解技術に対する新たな自然な評価を提供する。
IFゲーム解決の新たな視点を捉え,MPRC(Multi-Passage Reading)タスクとして再フォーマットする。
論文 参考訳(メタデータ) (2020-10-05T23:09:20Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
自然言語の独特な性質は、テキスト表現の分離をより困難にする。
情報理論にインスパイアされた本研究では,テキストの不整合表現を効果的に表現する手法を提案する。
条件付きテキスト生成とテキストスタイル転送の両方の実験は、不整合表現の質を実証する。
論文 参考訳(メタデータ) (2020-06-01T03:36:01Z) - Deep Learning for Hindi Text Classification: A Comparison [6.8629257716723]
デヴァナガリ文字で書かれた形態的に豊かで低資源のヒンディー語を分類する研究は、大きなラベル付きコーパスがないために限られている。
本研究では,CNN,LSTM,注意に基づくモデル評価のために,英文データセットの翻訳版を用いた。
また,本論文は,一般的なテキスト分類手法のチュートリアルとしても機能する。
論文 参考訳(メタデータ) (2020-01-19T09:29:12Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。