論文の概要: Ensemble Language Models for Multilingual Sentiment Analysis
- arxiv url: http://arxiv.org/abs/2403.06060v1
- Date: Sun, 10 Mar 2024 01:39:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 09:02:59.281682
- Title: Ensemble Language Models for Multilingual Sentiment Analysis
- Title(参考訳): 多言語感性分析のためのアンサンブル言語モデル
- Authors: Md Arid Hasan
- Abstract要約: SemEval-17のツイートテキストとアラビアセンティメントのつぶやきデータセットの感情分析について検討する。
その結果,単言語モデルでは性能が優れ,アンサンブルモデルではベースラインよりも優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid advancement of social media enables us to analyze user opinions. In
recent times, sentiment analysis has shown a prominent research gap in
understanding human sentiment based on the content shared on social media.
Although sentiment analysis for commonly spoken languages has advanced
significantly, low-resource languages like Arabic continue to get little
research due to resource limitations. In this study, we explore sentiment
analysis on tweet texts from SemEval-17 and the Arabic Sentiment Tweet dataset.
Moreover, We investigated four pretrained language models and proposed two
ensemble language models. Our findings include monolingual models exhibiting
superior performance and ensemble models outperforming the baseline while the
majority voting ensemble outperforms the English language.
- Abstract(参考訳): ソーシャルメディアの急速な進歩により、ユーザの意見を分析できるようになる。
近年、感情分析は、ソーシャルメディア上で共有されるコンテンツに基づく人間の感情を理解する上で、顕著な研究のギャップを示している。
一般的に話される言語に対する感情分析は著しく進歩しているが、アラビア語のような低リソース言語は資源制限のため研究がほとんど行われていない。
本研究では,SemEval-17 と Arabic Sentiment Tweet データセットのツイートテキストに対する感情分析を行った。
さらに、4つの事前学習言語モデルを調査し、2つのアンサンブル言語モデルを提案する。
その結果,単言語モデルの方が成績が優れ,アンサンブルモデルがベースラインを上回り,多数決のアンサンブルが英語を上回った。
関連論文リスト
- Sentiment Analysis Across Languages: Evaluation Before and After Machine Translation to English [0.0]
本稿では,機械翻訳を行った多言語データセットおよびテキストを対象とした感性分析タスクにおけるトランスフォーマーモデルの性能について検討する。
異なる言語文脈におけるこれらのモデルの有効性を比較することで、それらの性能変化と様々な言語における感情分析の潜在的な影響について洞察を得ることができる。
論文 参考訳(メタデータ) (2024-05-05T10:52:09Z) - M2SA: Multimodal and Multilingual Model for Sentiment Analysis of Tweets [4.478789600295492]
本稿では,既存のテキスト型Twitter感情データセットを,簡単なキュレーションプロセスを通じてマルチモーダルフォーマットに変換する。
本研究は,研究コミュニティにおける感情関連研究の新たな道を開くものである。
論文 参考訳(メタデータ) (2024-04-02T09:11:58Z) - Zero-shot Sentiment Analysis in Low-Resource Languages Using a
Multilingual Sentiment Lexicon [78.12363425794214]
私たちは、34の言語にまたがるゼロショットの感情分析タスクに重点を置いています。
文レベルの感情データを使用しない多言語語彙を用いた事前学習は、英語の感情データセットに微調整されたモデルと比較して、ゼロショット性能が優れていることを示す。
論文 参考訳(メタデータ) (2024-02-03T10:41:05Z) - Zero- and Few-Shot Prompting with LLMs: A Comparative Study with Fine-tuned Models for Bangla Sentiment Analysis [6.471458199049549]
本研究では,33,606件のニュースツイートとFacebookコメントを含む手動注釈付きデータセットを提案する。
また,Flan-T5,GPT-4,Bloomzなどの言語モデルを用いて,ゼロショットと少数ショットのインコンテキスト学習についても検討した。
以上の結果から,モノリンガルトランスフォーマーに基づくモデルは,ゼロおよび少数ショットシナリオにおいても,他のモデルよりも一貫して優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-08-21T15:19:10Z) - DN at SemEval-2023 Task 12: Low-Resource Language Text Classification
via Multilingual Pretrained Language Model Fine-tuning [0.0]
感情分析のための既存のモデルやデータセットは、英語や中国語などの高リソース言語向けに開発されている。
AfriSenti-SemEval 2023 Shared Task 12は、低リソースのアフリカの言語に対する感情分析モデルを評価することで、このギャップを埋めることを目的としている。
そこで我々は,多言語XLM-Rモデルを多言語モデルに適用し,様々なデータに基づいて分類ヘッドを訓練した。
論文 参考訳(メタデータ) (2023-05-04T07:28:45Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - XPersona: Evaluating Multilingual Personalized Chatbot [76.00426517401894]
我々はペルソナ・チャットの多言語拡張(XPersona)を提案する。
我々のデータセットには、多言語パーソナライズされたエージェントの構築と評価のための英語以外の6言語でのペルソナ会話が含まれています。
論文 参考訳(メタデータ) (2020-03-17T07:52:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。