論文の概要: Implicit Image-to-Image Schrodinger Bridge for Image Restoration
- arxiv url: http://arxiv.org/abs/2403.06069v3
- Date: Sat, 22 Mar 2025 03:07:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 21:22:30.979728
- Title: Implicit Image-to-Image Schrodinger Bridge for Image Restoration
- Title(参考訳): 画像復元のためのインシシシト・イメージ・トゥ・イメージ・シュロディンガーブリッジ
- Authors: Yuang Wang, Siyeop Yoon, Pengfei Jin, Matthew Tivnan, Sifan Song, Zhennong Chen, Rui Hu, Li Zhang, Quanzheng Li, Zhiqiang Chen, Dufan Wu,
- Abstract要約: 我々は,Imlicit Image-to-Image Schr"odinger Bridge (I$3$SB)を導入し,I$2$SBの生成過程をさらに加速する。
I$3$SB は生成過程を生成過程に初期劣化した画像を各生成段階に組み込むことで非マルコフフレームワークに再構成する。
I$2$SBと比較すると、I$3$SBはより少ない生成ステップで同じ知覚品質を達成しつつ、根本真実への忠実さを維持したり改善したりすることができる。
- 参考スコア(独自算出の注目度): 13.138398298354113
- License:
- Abstract: Diffusion-based models have demonstrated remarkable effectiveness in image restoration tasks; however, their iterative denoising process, which starts from Gaussian noise, often leads to slow inference speeds. The Image-to-Image Schr\"odinger Bridge (I$^2$SB) offers a promising alternative by initializing the generative process from corrupted images while leveraging training techniques from score-based diffusion models. In this paper, we introduce the Implicit Image-to-Image Schr\"odinger Bridge (I$^3$SB) to further accelerate the generative process of I$^2$SB. I$^3$SB restructures the generative process into a non-Markovian framework by incorporating the initial corrupted image at each generative step, effectively preserving and utilizing its information. To enable direct use of pretrained I$^2$SB models without additional training, we ensure consistency in marginal distributions. Extensive experiments across many image corruptions, including noise, low resolution, JPEG compression, and sparse sampling, and multiple image modalities, such as natural, human face, and medical images, demonstrate the acceleration benefits of I$^3$SB. Compared to I$^2$SB, I$^3$SB achieves the same perceptual quality with fewer generative steps, while maintaining or improving fidelity to the ground truth.
- Abstract(参考訳): 拡散に基づくモデルは、画像復元作業において顕著な効果を示したが、ガウスノイズから始まる反復的復調過程は、しばしば推論速度を遅くする。
Image-to-Image Schr\"odinger Bridge (I$^2$SB)は、劣化した画像から生成プロセスを初期化し、スコアベースの拡散モデルからのトレーニング技術を活用することで、有望な代替手段を提供する。
本稿では,I$^3$SBの生成過程をさらに加速させるために,Imlicit Image-to-Image Schr\"odinger Bridge(I$^3$SB)を紹介する。
I$^3$SB は生成過程を生成段階に初期劣化画像を組み込んで非マルコフフレームワークに再構成し、その情報を効果的に保存し活用する。
事前訓練したI$^2$SBモデルを追加トレーニングなしで直接使用できるようにするため,限界分布の整合性を確保する。
ノイズ、低分解能、JPEG圧縮、スパースサンプリング、および自然、人間の顔、医療画像などの複数の画像モダリティを含む多くの画像破損に対する大規模な実験は、I$3$SBの加速効果を実証している。
I$^2$SBと比較すると、I$^3$SBは生成段階を減らしながら同じ知覚品質を達成し、根本真理に対する忠実さを維持したり改善する。
関連論文リスト
- An Ordinary Differential Equation Sampler with Stochastic Start for Diffusion Bridge Models [13.00429687431982]
拡散ブリッジモデルは、純粋なガウスノイズではなく、劣化した画像から生成過程を初期化する。
既存の拡散ブリッジモデルは、しばしば微分方程式のサンプリングに頼り、推論速度が遅くなる。
拡散ブリッジモデルの開始点を有する高次ODEサンプリング器を提案する。
本手法は, 既訓練拡散ブリッジモデルと完全に互換性があり, 追加の訓練は不要である。
論文 参考訳(メタデータ) (2024-12-28T03:32:26Z) - Fast constrained sampling in pre-trained diffusion models [77.21486516041391]
拡散モデルは、大規模な生成画像モデルの分野を支配してきた。
本研究では,大規模な事前学習拡散モデルにおける高速拘束サンプリングのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-24T14:52:38Z) - Blind Image Restoration via Fast Diffusion Inversion [17.139433082780037]
Blind Image Restoration via fast Diffusion (BIRD) は、劣化モデルパラメータと復元画像の協調最適化を行うブラインド赤外線法である。
提案手法の鍵となる考え方は、初期ノイズがサンプリングされると、逆サンプリングを変更すること、すなわち、中間潜水剤を全て変更しないことである。
画像復元作業におけるBIRDの有効性を実験的に検証し,それらすべてに対して,その成果が得られたことを示す。
論文 参考訳(メタデータ) (2024-05-29T23:38:12Z) - SwiftBrush: One-Step Text-to-Image Diffusion Model with Variational Score Distillation [1.5892730797514436]
テキストと画像の拡散モデルは、しばしば遅い反復的なサンプリングプロセスに悩まされる。
我々は$textbfSwiftBrush$という新しいイメージフリー蒸留方式を提案する。
SwiftBrushは、COCO-30Kベンチマークで、$textbf16.67$のFIDスコアと$textbf0.29$のCLIPスコアを達成している。
論文 参考訳(メタデータ) (2023-12-08T18:44:09Z) - ACT-Diffusion: Efficient Adversarial Consistency Training for One-step Diffusion Models [59.90959789767886]
整合性トレーニング損失の最適化は,目標分布と生成分布とのワッサーシュタイン距離を最小化することを示す。
CIFAR10 と ImageNet 64$times$64 と LSUN Cat 256$times$256 データセットの FID スコアを改善する。
論文 参考訳(メタデータ) (2023-11-23T16:49:06Z) - Improving Denoising Diffusion Models via Simultaneous Estimation of
Image and Noise [15.702941058218196]
本稿では,逆拡散過程によって生成される画像の速度と品質の向上を目的とした2つの重要なコントリビューションを紹介する。
最初のコントリビューションは、画像と雑音の間の四分円弧上の角度で拡散過程を再パラメータ化することである。
2つ目のコントリビューションは、私たちのネットワークを使ってイメージ(mathbfx_0$)とノイズ(mathbfepsilon$)を直接見積もることです。
論文 参考訳(メタデータ) (2023-10-26T05:43:07Z) - EGC: Image Generation and Classification via a Diffusion Energy-Based
Model [59.591755258395594]
この研究は、エネルギーベースの分類器とジェネレータ、すなわちEMCを導入し、単一のニューラルネットワークを使用して両方のタスクで優れたパフォーマンスを実現する。
EGCはImageNet-1k、CelebA-HQ、LSUN Churchの最先端アプローチと比較して、競争力のある生成結果を達成している。
この研究は、ネットワークパラメータの単一セットを使用して両方のタスクを同時に実行しようとする最初の試みである。
論文 参考訳(メタデータ) (2023-04-04T17:59:14Z) - I$^2$SB: Image-to-Image Schr\"odinger Bridge [87.43524087956457]
Image-to-Image Schr"odinger Bridge (I$2$SB) は条件拡散モデルの新しいクラスである。
I$2$SB は、2つの与えられた分布間の非線形拡散過程を直接学習する。
I$2$SBは、より解釈可能な生成過程を持つ標準条件拡散モデルを超えることを示す。
論文 参考訳(メタデータ) (2023-02-12T08:35:39Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
本稿では,一般のSISRタスクを未知の劣化で扱うためのモデルベースunsupervised SISR法を提案する。
提案手法は, より小さなモデル (0.34M vs. 2.40M) だけでなく, より高速な技術 (SotA) 法 (約1dB PSNR) の現況を明らかに超えることができる。
論文 参考訳(メタデータ) (2021-07-02T11:55:40Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。