Analytical evaluation of the effect of deterministic control error on
isolated quantum system
- URL: http://arxiv.org/abs/2403.06116v1
- Date: Sun, 10 Mar 2024 07:23:37 GMT
- Title: Analytical evaluation of the effect of deterministic control error on
isolated quantum system
- Authors: Kohei Kobayashi
- Abstract summary: We investigate the effect of analog control errors which deterministically occurs on isolated quantum dynamics.
We derive a lower bound of the overlap between two isolated quantum systems obeying time evolution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We investigate the effect of analog control errors which deterministically
occurs on isolated quantum dynamics. Quantum information technologies require
careful control for preparing a desired quantum state used as an information
resource. However, in realistic experiment systems, it is difficult to
implement the driving Hamiltonian without analog errors and the actual
performance of quantum control is far away from the ideal one. Towards this
problem, we derive a lower bound of the overlap between two isolated quantum
systems obeying time evolution in the absence and presence of deterministic
control errors. We demonstrate the effectiveness of the bound through some
examples. Furthermore, by using this bound, we give an analytical estimate on
the probability of obtaining the target state under any control errors.
Related papers
- Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Quantum hypothesis testing via robust quantum control [8.087946804627284]
We introduce a robust control approach optimized for a range of signal noise, demonstrating superior robustness beyond the predefined tolerance window.
On average, both the optimal control and robust control show improvements over the uncontrolled schemes for various dephasing or decay rates.
arXiv Detail & Related papers (2023-09-11T16:19:41Z) - Transition Role of Entangled Data in Quantum Machine Learning [51.6526011493678]
Entanglement serves as the resource to empower quantum computing.
Recent progress has highlighted its positive impact on learning quantum dynamics.
We establish a quantum no-free-lunch (NFL) theorem for learning quantum dynamics using entangled data.
arXiv Detail & Related papers (2023-06-06T08:06:43Z) - Threshold theorem in quantum annealing with deterministic analog control
errors [1.14219428942199]
We investigate the effect of deterministic analog control errors in the time-dependent Hamiltonian on isolated quantum dynamics.
We give an upper bound on the distance between two states in time evolution with and without deterministic analog control errors.
arXiv Detail & Related papers (2023-01-30T17:16:33Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Control limit for the quantum state preparation under stochastic control
errors [0.0]
We investigate the effect of control errors on the Hamiltonian that controls a closed quantum system.
We derive a lower bound of the fidelity between two closed quantum systems obeying the dynamics with and without errors.
arXiv Detail & Related papers (2022-11-27T15:35:14Z) - Variational principle for optimal quantum controls in quantum metrology [2.29042212865183]
We develop a variational principle to determine the quantum controls and initial state which optimize the quantum Fisher information.
We find for magnetometry with a time-independent spin chain containing three-body interactions, even when the controls are restricted to one and two-body interaction, that the Heisenberg scaling can still be approximately achieved.
arXiv Detail & Related papers (2021-11-07T16:11:55Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Systematic errors in direct state measurements with quantum controlled
measurements [0.0]
We use a quantum controlled measurement framework for measuring quantum states directly.
We numerically investigate the systematic errors, evaluate the confidence region, and investigate the effect of experimental noise.
Our analysis has important applications in direct quantum state tomography.
arXiv Detail & Related papers (2020-02-18T01:40:30Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.