論文の概要: Are You Being Tracked? Discover the Power of Zero-Shot Trajectory
Tracing with LLMs!
- arxiv url: http://arxiv.org/abs/2403.06201v1
- Date: Sun, 10 Mar 2024 12:50:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 07:19:51.772469
- Title: Are You Being Tracked? Discover the Power of Zero-Shot Trajectory
Tracing with LLMs!
- Title(参考訳): 追跡されてるの?
LLMによるゼロショット軌道追跡のパワーを発見!
- Authors: Huanqi Yang, Sijie Ji, Rucheng Wu, Weitao Xu
- Abstract要約: LLMTrackは、ゼロショット軌道認識にLLMをどのように活用できるかを示すモデルである。
本研究では,屋内シナリオと屋外シナリオを特徴とする異なる軌跡を用いて,現実のデータセットを用いてモデルを評価した。
- 参考スコア(独自算出の注目度): 3.844253028598048
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a burgeoning discussion around the capabilities of Large Language
Models (LLMs) in acting as fundamental components that can be seamlessly
incorporated into Artificial Intelligence of Things (AIoT) to interpret complex
trajectories. This study introduces LLMTrack, a model that illustrates how LLMs
can be leveraged for Zero-Shot Trajectory Recognition by employing a novel
single-prompt technique that combines role-play and think step-by-step
methodologies with unprocessed Inertial Measurement Unit (IMU) data. We
evaluate the model using real-world datasets designed to challenge it with
distinct trajectories characterized by indoor and outdoor scenarios. In both
test scenarios, LLMTrack not only meets but exceeds the performance benchmarks
set by traditional machine learning approaches and even contemporary
state-of-the-art deep learning models, all without the requirement of training
on specialized datasets. The results of our research suggest that, with
strategically designed prompts, LLMs can tap into their extensive knowledge
base and are well-equipped to analyze raw sensor data with remarkable
effectiveness.
- Abstract(参考訳): 複雑な軌跡を解釈するために、AIoT(Artificial Intelligence of Things)にシームレスに組み込むことのできる基本的なコンポーネントとして機能する、Large Language Models(LLMs)の能力に関する活発な議論がある。
LLMTrackは、ロールプレイとステップバイステップの方法論と、未処理の慣性計測ユニット(IMU)データを組み合わせた新しい単一プロンプト技術を用いて、ゼロショット軌道認識にLLMをどのように活用できるかを示すモデルである。
本研究では,屋内シナリオと屋外シナリオを特徴とする異なる軌跡を用いて,現実のデータセットを用いてモデルを評価する。
両方のテストシナリオにおいて、LLMTrackは、従来の機械学習アプローチと、現代の最先端のディープラーニングモデルによって設定されたパフォーマンスベンチマークに適合するだけでなく、すべて特別なデータセットでトレーニングする必要がない。
本研究の結果から,LSMは戦略的に設計したプロンプトにより,広範囲な知識ベースを活用でき,生のセンサデータを顕著な有効性で分析できる可能性が示唆された。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
訓練済みまたは微調整済みのモデルに格納された特定のデータを消去しようとする機械学習は、LLMにとって重要な保護措置として登場した。
構造的アンラーニング手法の開発を容易にするため,マルチシナリオデータセットをコンパイルするパイプラインであるPISTOLを提案する。
Llama2-7BモデルとMistral-7Bモデルの両方で4つの異なる未学習手法を用いてベンチマークを行う。
論文 参考訳(メタデータ) (2024-06-24T17:22:36Z) - TrajCogn: Leveraging LLMs for Cognizing Movement Patterns and Travel Purposes from Trajectories [24.44686757572976]
S時間軌道は様々なデータマイニング作業において重要である。
異なるタスクを高精度に行う多目的軌跡学習法を開発することが重要である。
モデルキャパシティの制限と、トラジェクトリデータセットの品質とスケールのため、これは難しい。
論文 参考訳(メタデータ) (2024-05-21T02:33:17Z) - Traj-LLM: A New Exploration for Empowering Trajectory Prediction with Pre-trained Large Language Models [12.687494201105066]
本稿では,Traj-LLMを提案する。Large Language Models (LLMs) を用いて,エージェントの過去の/観測された軌跡やシーンセマンティクスから将来の動きを生成する可能性について検討する。
LLMの強力な理解能力は、ハイレベルなシーン知識とインタラクティブな情報のスペクトルを捉えている。
人為的な車線焦点認知機能を模倣し,先駆的なMambaモジュールを用いた車線認識確率論的学習を導入する。
論文 参考訳(メタデータ) (2024-05-08T09:28:04Z) - HARGPT: Are LLMs Zero-Shot Human Activity Recognizers? [9.414529772034985]
我々は,Large Language Models (LLM) が生のIMUデータを理解し,ゼロショットで人間の活動認識タスクを実行できることを示す。
我々は、GPT4上のHARGPTを、クラス間の類似性の異なる2つの公開データセットを用いてベンチマークし、従来の機械学習と最先端の深い分類モデルの両方に基づいて、様々なベースラインを比較した。
注目すべきは、LLMは生のIMUデータから人間の活動を認識し、両方のデータセットのベースラインを一貫して上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T07:34:51Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
本稿では,SPIN(Self-Play fIne-tuNing)と呼ばれるファインチューニング手法を提案する。
SPINの中心には自己再生機構があり、LLMは自身のインスタンスと対戦することでその能力を洗練させる。
このことは、自己プレイの約束に光を当て、熟練した相手を必要とせずに、LSMにおける人間レベルのパフォーマンスの達成を可能にする。
論文 参考訳(メタデータ) (2024-01-02T18:53:13Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。