論文の概要: Text-Guided Variational Image Generation for Industrial Anomaly
Detection and Segmentation
- arxiv url: http://arxiv.org/abs/2403.06247v1
- Date: Sun, 10 Mar 2024 16:11:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 06:45:24.351913
- Title: Text-Guided Variational Image Generation for Industrial Anomaly
Detection and Segmentation
- Title(参考訳): 産業異常検出・セグメンテーションのためのテキスト誘導変分画像生成
- Authors: Mingyu Lee, Jongwon Choi
- Abstract要約: 工業生産における異常検出のためのクリーンなデータ取得の課題に対して,テキスト誘導型変分画像生成手法を提案する。
本手法では,対象対象物に関するテキスト情報を用いて,入力画像に類似した非欠陥データ画像を生成する。
- 参考スコア(独自算出の注目度): 8.106071888509828
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a text-guided variational image generation method to address the
challenge of getting clean data for anomaly detection in industrial
manufacturing. Our method utilizes text information about the target object,
learned from extensive text library documents, to generate non-defective data
images resembling the input image. The proposed framework ensures that the
generated non-defective images align with anticipated distributions derived
from textual and image-based knowledge, ensuring stability and generality.
Experimental results demonstrate the effectiveness of our approach, surpassing
previous methods even with limited non-defective data. Our approach is
validated through generalization tests across four baseline models and three
distinct datasets. We present an additional analysis to enhance the
effectiveness of anomaly detection models by utilizing the generated images.
- Abstract(参考訳): 工業生産における異常検出のためのクリーンデータ取得の課題に対して,テキスト誘導型変分画像生成手法を提案する。
本手法では,対象対象物に関するテキスト情報を用いて,入力画像に類似した非欠陥データ画像を生成する。
提案フレームワークは、生成した非欠陥画像が、テキストおよび画像に基づく知識から導出される予測分布と整合し、安定性と汎用性を確保する。
実験の結果,非欠陥データに限り,従来の手法を超越したアプローチの有効性が示された。
提案手法は4つのベースラインモデルと3つの異なるデータセットの一般化テストによって検証される。
生成した画像を利用して異常検出モデルの有効性を高めるための追加分析を行う。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - Research on Splicing Image Detection Algorithms Based on Natural Image Statistical Characteristics [12.315852697312195]
本稿では,自然画像の統計的特徴に基づく新しいスプライシング画像検出アルゴリズムを提案する。
従来の手法の限界を解析することにより,高度な統計解析手法と機械学習手法を統合した検出フレームワークを開発した。
このアルゴリズムは、複数の公開データセットを用いて検証され、スプライシングエッジの検出と、改ざんされた領域の特定に高い精度を示す。
論文 参考訳(メタデータ) (2024-04-25T02:28:16Z) - Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Improving Diversity in Zero-Shot GAN Adaptation with Semantic Variations [61.132408427908175]
0ショットのGAN適応は、よく訓練されたジェネレータを再利用して、目に見えないターゲットドメインの画像を合成することを目的としている。
実際の画像の代わりに1つの代表的テキスト機能しか持たないため、合成された画像は徐々に多様性を損なう。
そこで本研究では,CLIP空間における対象テキストの意味的変化を見つけるための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T08:12:28Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
テキストと画像の拡散モデルは、画像認識の恩恵を受ける大きな可能性を示している。
有望ではあるが、拡散生成画像の教師なし学習に特化した調査は不十分である。
上記フリーアテンションマスクをフル活用することで、カスタマイズされたソリューションを導入する。
論文 参考訳(メタデータ) (2023-08-13T10:07:46Z) - UMat: Uncertainty-Aware Single Image High Resolution Material Capture [2.416160525187799]
本研究では, 物体の単一拡散像から正規性, 特異性, 粗さを復元する学習手法を提案する。
本手法は材料デジタル化における不確実性をモデル化する問題に最初に対処する手法である。
論文 参考訳(メタデータ) (2023-05-25T17:59:04Z) - Training on Thin Air: Improve Image Classification with Generated Data [28.96941414724037]
Diffusion Inversionは、画像分類のための多種多様な高品質なトレーニングデータを生成するための、シンプルで効果的な方法である。
提案手法は,元のデータ分布を捕捉し,画像を安定拡散の潜在空間に反転させることにより,データカバレッジを確保する。
生成した画像が元のデータセットに取って代わることに成功した3つの重要なコンポーネントを特定します。
論文 参考訳(メタデータ) (2023-05-24T16:33:02Z) - Taming Encoder for Zero Fine-tuning Image Customization with
Text-to-Image Diffusion Models [55.04969603431266]
本稿では,ユーザが指定したカスタマイズされたオブジェクトの画像を生成する手法を提案する。
この手法は、従来のアプローチで要求される長大な最適化をバイパスする一般的なフレームワークに基づいている。
提案手法は, 出力品質, 外観の多様性, 被写体忠実度を考慮した画像合成が可能であることを示す。
論文 参考訳(メタデータ) (2023-04-05T17:59:32Z) - Benchmarking performance of object detection under image distortions in
an uncontrolled environment [0.483420384410068]
オブジェクト検出アルゴリズムの堅牢性は、現実世界のアプリケーションにおいて顕著な役割を果たす。
物体検出法の性能は, 被写体内歪みに悩まされていることが証明されている。
本稿では,最先端のオブジェクト検出手法の性能評価フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-28T09:06:52Z) - Transformation Consistency Regularization- A Semi-Supervised Paradigm
for Image-to-Image Translation [18.870983535180457]
本稿では,画像から画像への変換において,より困難な状況に陥るトランスフォーメーション一貫性の規則化を提案する。
我々は,画像の着色,分解,超解像の3つの異なる応用に対して,アルゴリズムの有効性を評価する。
提案手法はデータ効率が著しく向上し,画像再構成を行うにはラベル付きサンプルの約10~20%しか必要としない。
論文 参考訳(メタデータ) (2020-07-15T17:41:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。