論文の概要: Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors
- arxiv url: http://arxiv.org/abs/2411.07472v1
- Date: Tue, 12 Nov 2024 01:17:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:21:26.870835
- Title: Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors
- Title(参考訳): 半真実:AI生成画像検出器のロバスト性評価のためのAI拡張画像の大規模データセット
- Authors: Anisha Pal, Julia Kruk, Mansi Phute, Manognya Bhattaram, Diyi Yang, Duen Horng Chau, Judy Hoffman,
- Abstract要約: 実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
- 参考スコア(独自算出の注目度): 62.63467652611788
- License:
- Abstract: Text-to-image diffusion models have impactful applications in art, design, and entertainment, yet these technologies also pose significant risks by enabling the creation and dissemination of misinformation. Although recent advancements have produced AI-generated image detectors that claim robustness against various augmentations, their true effectiveness remains uncertain. Do these detectors reliably identify images with different levels of augmentation? Are they biased toward specific scenes or data distributions? To investigate, we introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images that feature targeted and localized perturbations produced using diverse augmentation techniques, diffusion models, and data distributions. Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness. Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used, offering new insights into their performance and limitations. The code for the augmentation and evaluation pipeline is available at https://github.com/J-Kruk/SemiTruths.
- Abstract(参考訳): テキスト・ツー・イメージの拡散モデルは、芸術、デザイン、エンターテイメントに影響を及ぼすが、これらの技術は誤情報の作成と拡散を可能にすることで大きなリスクを生じさせる。
近年の進歩により、様々な拡張に対して堅牢性を主張するAI生成画像検出器が生み出されているが、その真の有効性は未だに不明である。
これらの検出器は、異なるレベルの拡大レベルの画像を確実に識別するのか?
特定のシーンやデータ分布に偏っているのでしょうか?
本研究では,27,600個の実画像,223,400個のマスク,1,472,700個のAI拡張画像を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動のタイプや程度,データ分布,拡張方法に様々な感度を示し,その性能や限界に対する新たな洞察を提供する可能性が示唆された。
拡張および評価パイプラインのコードはhttps://github.com/J-Kruk/SemiTruths.comで公開されている。
関連論文リスト
- A Bias-Free Training Paradigm for More General AI-generated Image Detection [15.421102443599773]
良く設計された法医学的検知器は、データバイアスを反映するのではなく、生成物固有のアーティファクトを検出する必要がある。
本稿では,実画像から偽画像を生成する,バイアスのない学習パラダイムであるB-Freeを提案する。
我々は,最先端検出器の一般化とロバスト性の両方において有意な改善が認められた。
論文 参考訳(メタデータ) (2024-12-23T15:54:32Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Addressing Vulnerabilities in AI-Image Detection: Challenges and Proposed Solutions [0.0]
本研究では,AI生成画像の検出における畳み込みニューラルネットワーク(CNN)とDenseNetアーキテクチャの有効性を評価する。
本稿では,ガウスのぼかしやテキスト変更,ローランド適応(LoRA)などの更新や修正が検出精度に与える影響を解析する。
この発見は、現在の検出方法の脆弱性を強調し、AI画像検出システムの堅牢性と信頼性を高めるための戦略を提案する。
論文 参考訳(メタデータ) (2024-11-26T06:35:26Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
凍結したCLIP埋め込みに基づいて、既存の最先端AIGI検出手法を解析する。
さまざまなAIジェネレータが生成する画像が実際の画像とどのように異なるかを示す。
論文 参考訳(メタデータ) (2024-06-21T10:33:09Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Diffusion Facial Forgery Detection [56.69763252655695]
本稿では,顔に焦点をあてた拡散生成画像を対象とした包括的データセットであるDiFFを紹介する。
人体実験といくつかの代表的な偽造検出手法を用いて,DiFFデータセットの広範な実験を行った。
その結果、人間の観察者と自動検出者の2値検出精度は30%以下であることが判明した。
論文 参考訳(メタデータ) (2024-01-29T03:20:19Z) - GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image [28.38575401686718]
我々は、100万組のAI生成フェイクイメージと実際の画像の収集を含むGenImageデータセットを紹介した。
この利点は、GenImageで訓練された検出器が徹底的な評価を行い、多様な画像に適用可能であることを示すことである。
本研究では,本データセットの包括的解析を行い,実世界のシナリオに類似した検出手法を評価するための2つの課題を提案する。
論文 参考訳(メタデータ) (2023-06-14T15:21:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。