論文の概要: Poly Kernel Inception Network for Remote Sensing Detection
- arxiv url: http://arxiv.org/abs/2403.06258v2
- Date: Wed, 20 Mar 2024 15:31:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 21:18:47.930078
- Title: Poly Kernel Inception Network for Remote Sensing Detection
- Title(参考訳): リモートセンシング検出のためのpoly Kernel Inception Network
- Authors: Xinhao Cai, Qiuxia Lai, Yuwei Wang, Wenguan Wang, Zeren Sun, Yazhou Yao,
- Abstract要約: リモートセンシング画像における物体検出の課題に対処するために,Poly Kernel Inception Network (PKINet)を導入する。
PKINetはディレーションなしでマルチスケールの畳み込みカーネルを使用し、様々なスケールのオブジェクトの特徴を抽出し、ローカルコンテキストをキャプチャする。
これら2つのコンポーネントは、4つの挑戦的なリモートセンシング検出ベンチマーク上でPKINetのパフォーマンスを向上させるために共同で動作する。
- 参考スコア(独自算出の注目度): 64.60749113583601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection in remote sensing images (RSIs) often suffers from several increasing challenges, including the large variation in object scales and the diverse-ranging context. Prior methods tried to address these challenges by expanding the spatial receptive field of the backbone, either through large-kernel convolution or dilated convolution. However, the former typically introduces considerable background noise, while the latter risks generating overly sparse feature representations. In this paper, we introduce the Poly Kernel Inception Network (PKINet) to handle the above challenges. PKINet employs multi-scale convolution kernels without dilation to extract object features of varying scales and capture local context. In addition, a Context Anchor Attention (CAA) module is introduced in parallel to capture long-range contextual information. These two components work jointly to advance the performance of PKINet on four challenging remote sensing detection benchmarks, namely DOTA-v1.0, DOTA-v1.5, HRSC2016, and DIOR-R.
- Abstract(参考訳): リモートセンシング画像(RSI)におけるオブジェクト検出は、オブジェクトスケールの大きな変化や、多様なコンテキストを含む、いくつかの増大する課題に悩まされることが多い。
以前の方法は、大きなカーネルの畳み込みまたは拡張された畳み込みによって、バックボーンの空間受容領域を拡張することで、これらの課題に対処しようとした。
しかしながら、前者は典型的にはかなりのバックグラウンドノイズを発生させ、後者は過度にスパースな特徴表現を発生させるリスクを負う。
本稿では、上記の課題に対処するPoly Kernel Inception Network(PKINet)を紹介する。
PKINetはディレーションなしでマルチスケールの畳み込みカーネルを使用し、様々なスケールのオブジェクトの特徴を抽出し、ローカルコンテキストをキャプチャする。
さらに、コンテキスト・アンカー・アテンション(CAA)モジュールが並列に導入され、長距離のコンテキスト情報をキャプチャする。
これら2つのコンポーネントは、DOTA-v1.0、DOTA-v1.5、HRSC2016、DIOR-Rという4つの挑戦的なリモートセンシング検出ベンチマークでPKINetの性能を向上させるために共同で動作する。
関連論文リスト
- Renormalized Connection for Scale-preferred Object Detection in Satellite Imagery [51.83786195178233]
我々は、効率的な特徴抽出の観点から再正規化群理論を実装するために、知識発見ネットワーク(KDN)を設計する。
KDN上の再正規化接続(RC)は、マルチスケール特徴の「相乗的焦点」を可能にする。
RCはFPNベースの検出器のマルチレベル特徴の分割・対数機構を幅広いスケールで予測されたタスクに拡張する。
論文 参考訳(メタデータ) (2024-09-09T13:56:22Z) - LSKNet: A Foundation Lightweight Backbone for Remote Sensing [78.29112381082243]
本稿では,軽量なLarge Selective Kernel Network (LSKNet) バックボーンを提案する。
LSKNetはその大きな空間受容場を調整し、リモートセンシングシナリオにおける様々なオブジェクトの範囲をモデル化する。
我々の軽量LSKNetは、標準リモートセンシング分類、オブジェクト検出、セマンティックセグメンテーションベンチマークに基づいて、最先端のスコアを設定しています。
論文 参考訳(メタデータ) (2024-03-18T12:43:38Z) - Anchor Free remote sensing detector based on solving discrete polar
coordinate equation [4.708085033897991]
回転・多スケール物体を検出するためのAnchor Free Aviatic Remote Sensor Object Detector (BWP-Det) を提案する。
具体的には、インタラクティブなダブルブランチ(IDB)アップサンプリングネットワークを設計し、ヒートマップの予測に1つのブランチを徐々にアップサンプリングする。
我々は、前景と背景の違いを強調するために、重み付きマルチスケール畳み込み(WmConv)を改善した。
論文 参考訳(メタデータ) (2023-03-21T09:28:47Z) - HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness [2.341385717236931]
本稿では,RGB-Dサリエンシ検出のための階層的深度認識ネットワーク(HiDAnet)を提案する。
我々のモチベーションは、幾何学的先行の多粒性特性がニューラルネットワーク階層とよく相関しているという観察から来ています。
当社のHiDAnetは最先端の手法よりも大きなマージンで良好に動作します。
論文 参考訳(メタデータ) (2023-01-18T10:00:59Z) - FGAHOI: Fine-Grained Anchors for Human-Object Interaction Detection [4.534713782093219]
上記の問題を緩和するために、新しいエンドツーエンドトランスフォーマーベースフレームワーク(FGAHOI)を提案する。
FGAHOIは、マルチスケールサンプリング(MSS)、階層空間認識マージ(HSAM)、タスク認識マージ機構(TAM)の3つの専用コンポーネントから構成される。
論文 参考訳(メタデータ) (2023-01-08T03:53:50Z) - Dual Swin-Transformer based Mutual Interactive Network for RGB-D Salient
Object Detection [67.33924278729903]
本研究では,Dual Swin-Transformerを用いたMutual Interactive Networkを提案する。
視覚入力における長距離依存をモデル化するために,RGBと奥行きモードの両方の機能抽出器としてSwin-Transformerを採用している。
5つの標準RGB-D SODベンチマークデータセットに関する総合的な実験は、提案手法の優位性を実証している。
論文 参考訳(メタデータ) (2022-06-07T08:35:41Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
変換器を用いた赤外線小径目標検出手法を提案する。
画像特徴の相互作用情報をより広い範囲で学習するために,変換器の自己認識機構を採用する。
最小限のターゲットの機能を学習するための機能拡張モジュールも設計しています。
論文 参考訳(メタデータ) (2021-09-29T12:23:41Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
小さくて散らばった物体は実世界では一般的であり、検出は困難である。
本稿では,まず,物体検出にデノナイズするアイデアを革新的に紹介する。
機能マップ上のインスタンスレベルの記述は、小さくて散らばったオブジェクトの検出を強化するために行われる。
論文 参考訳(メタデータ) (2020-04-28T06:03:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。