論文の概要: ES-FUZZ: Improving the Coverage of Firmware Fuzzing with Stateful and Adaptable MMIO Models
- arxiv url: http://arxiv.org/abs/2403.06281v2
- Date: Sat, 14 Sep 2024 03:00:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 02:55:35.048300
- Title: ES-FUZZ: Improving the Coverage of Firmware Fuzzing with Stateful and Adaptable MMIO Models
- Title(参考訳): ES-FUZZ:ステートフルかつ適応可能なMMIOモデルによるファームウェアファジリングのカバレッジ改善
- Authors: Wei-Lun Huang, Kang G. Shin,
- Abstract要約: 本稿では,ファームウェアファズテストのカバレッジを高めるためのES-Fuzzを提案する。
ES-Fuzzは、与えられたファザーと並行して動作し、ファザーのカバレッジが停滞するたびに新しい実行を開始する。
各実行中の最高カバレッジテストケースを活用して、その時のファッザのカバレッジを高めるために、新しいステートフルなMMIOモデルを生成する。
- 参考スコア(独自算出の注目度): 16.012578574279484
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Grey-box fuzzing is widely used for testing embedded systems (ESes). The fuzzers often test the ES firmware in a fully emulated environment without real peripherals. To achieve decent code coverage, some state-of-the-art (SOTA) fuzzers infer the memory-mapped I/O (MMIO) behavior of peripherals from the firmware binary. We find the thus-generated MMIO models stateless, fixed, and poor at handling ES firmware's MMIO reads for retrieval of a data chunk. This leaves ample room for improving the code coverage. We propose ES-Fuzz to enhance the coverage of firmware fuzz-testing with stateful MMIO models that adapt to the fuzzer's coverage bottleneck. ES-Fuzz runs concurrently with a given fuzzer and starts a new run whenever the fuzzer's coverage stagnates. It exploits the highest-coverage test case in each run and generates new stateful MMIO models that boost the fuzzer's coverage at that time. We have implemented ES-Fuzz upon Fuzzware and evaluated it with 24 popular ES firmware. ES-Fuzz is shown to improve Fuzzware's coverage by up to $47\%$ and find new bugs in these firmware.
- Abstract(参考訳): グレーボックスファジングは組み込みシステム(ES)のテストに広く使われている。
ファジィザはESファームウェアを実周辺機器なしで完全にエミュレートされた環境でテストすることが多い。
適切なコードカバレッジを達成するために、ファームウェアバイナリから周辺機器のメモリマップされたI/O(MMIO)挙動を推測するSOTA(State-of-the-art)ファッジャがある。
本研究では,データチャンクの検索のために,ESファームウェアのMMIO読み出し処理において,生成したMMIOモデルをステートレス,固定,貧弱にする。
コードカバレッジを改善する余地は十分残っている。
本研究では,ファジタのカバレッジボトルネックに適応するステートフルなMMIOモデルを用いて,ファームウェアファジテストのカバレッジを向上させるためのES-Fuzzを提案する。
ES-Fuzzは、与えられたファザーと並行して動作し、ファザーのカバレッジが停滞するたびに新しい実行を開始する。
各実行中の最高カバレッジテストケースを活用して、その時のファッザのカバレッジを高めるために、新しいステートフルなMMIOモデルを生成する。
我々は、ファズウェア上でES-Fuzzを実装し、24の人気のあるESファームウェアで評価した。
ES-Fuzzは、Fuzzwareのカバレッジを最大4,7 %改善し、ファームウェアに新しいバグを見つけることが示されている。
関連論文リスト
- FuzzWiz -- Fuzzing Framework for Efficient Hardware Coverage [2.1626093085892144]
FuzzWizという自動ハードウェアファジリングフレームワークを作成しました。
RTL設計モジュールのパース、C/C++モデルへの変換、アサーション、リンク、ファジングによるジェネリックテストベンチの作成を含む。
ベンチマークの結果,従来のシミュレーション回帰手法の10倍の速度でカバー範囲の約90%を達成できた。
論文 参考訳(メタデータ) (2024-10-23T10:06:08Z) - G-Fuzz: A Directed Fuzzing Framework for gVisor [48.85077340822625]
G-FuzzはgVisor用のファジィフレームワークである。
G-Fuzzは業界に展開され、深刻な脆弱性を複数発見している。
論文 参考訳(メタデータ) (2024-09-20T01:00:22Z) - $\mathbb{USCD}$: Improving Code Generation of LLMs by Uncertainty-Aware Selective Contrastive Decoding [64.00025564372095]
大規模言語モデル(LLM)は、コード生成において顕著な能力を示している。
幻覚の影響(例えば出力ノイズ)は、LLMが1パスで高品質なコードを生成するのを難しくする。
単純かつ効果的なtextbfuncertainty-aware textbf select textbfcontrastive textbfdecodingを提案する。
論文 参考訳(メタデータ) (2024-09-09T02:07:41Z) - Comment on Revisiting Neural Program Smoothing for Fuzzing [34.32355705821806]
ACM FSE 2023で受け入れられたMLFuzzは、機械学習ベースのファザーであるNEUZZのパフォーマンスを再考する。
実装におけるいくつかの致命的なバグと間違った評価設定のために、その主な結論が完全に間違っていることを実証する。
論文 参考訳(メタデータ) (2024-09-06T16:07:22Z) - FuzzCoder: Byte-level Fuzzing Test via Large Language Model [46.18191648883695]
我々は,攻撃を成功させることで,入力ファイルのパターンを学習するために,微調整された大言語モデル(FuzzCoder)を採用することを提案する。
FuzzCoderは、プログラムの異常な動作を引き起こすために、入力ファイル内の突然変異位置と戦略位置を予測することができる。
論文 参考訳(メタデータ) (2024-09-03T14:40:31Z) - AIM: Automatic Interrupt Modeling for Dynamic Firmware Analysis [14.623460803437057]
AIMは汎用的でスケーラブルで、ハードウェアに依存しない動的ファームウェア分析フレームワークである。
AIMは、ファームウェアにおける割り込み依存コードを、新しい、ファームウェア誘導のジャスト・イン・タイム・イン・タイム・イン・タイム・インターファイリング技術によってカバーする。
私たちのフレームワークは、最先端のアプローチよりも11.2倍の割り込み依存のコードをカバーしています。
論文 参考訳(メタデータ) (2023-12-02T18:06:22Z) - Boot and Switch: Alternating Distillation for Zero-Shot Dense Retrieval [50.47192086219752]
$texttABEL$は、ゼロショット設定でのパス検索を強化するための、シンプルだが効果的な教師なしのメソッドである。
ラベル付きデータに対して$texttABEL$を微調整するか、既存の教師付き高密度検索と統合することにより、最先端の結果が得られる。
論文 参考訳(メタデータ) (2023-11-27T06:22:57Z) - Revisiting Neural Program Smoothing for Fuzzing [8.861172379630899]
本稿では,標準グレーボックスファザに対するNPSファザの最も広範囲な評価について述べる。
我々はNuzz++を実装し、NPSファジィの実用的限界に対処することで性能が向上することを示す。
MLベースファジィの簡易かつ再現可能な評価のためのGPUアクセスプラットフォームであるMLFuzzを提案する。
論文 参考訳(メタデータ) (2023-09-28T17:17:11Z) - Fuzzing with Quantitative and Adaptive Hot-Bytes Identification [6.442499249981947]
アメリカのファジィ・ロック(fuzzy lop)はファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)と呼ばれるファジィ・ロック(fuzzy lop)ツールだ。
以下の原則に基づいて設計したツールという手法を提案する。
実世界の10のプログラムとLAVA-Mデータセットによる評価結果から,ツールキーブが分岐カバレッジを持続的に増加させ,他のファザよりも多くのバグを発見できた。
論文 参考訳(メタデータ) (2023-07-05T13:41:35Z) - Recurrent Dynamic Embedding for Video Object Segmentation [54.52527157232795]
一定サイズのメモリバンクを構築するためにRDE(Recurrent Dynamic Embedding)を提案する。
本稿では, SAM を長時間の動画でより堅牢にするため, トレーニング段階での無バイアス誘導損失を提案する。
また、メモリバンクの異なる品質のマスクの埋め込みをネットワークが修復できるように、新たな自己補正戦略を設計する。
論文 参考訳(メタデータ) (2022-05-08T02:24:43Z) - Gaussian MRF Covariance Modeling for Efficient Black-Box Adversarial
Attacks [86.88061841975482]
我々は,ゼロオーダーのオラクルにのみアクセス可能なブラックボックス設定において,逆例を生成する問題について検討する。
我々はこの設定を用いて、FGSM(Fast Gradient Sign Method)のブラックボックス版と同様に、高速な1ステップの敵攻撃を見つける。
提案手法はクエリを少なくし,現在の技術よりも攻撃成功率が高いことを示す。
論文 参考訳(メタデータ) (2020-10-08T18:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。