Generative Multimodal Models are In-Context Learners
- URL: http://arxiv.org/abs/2312.13286v2
- Date: Wed, 8 May 2024 03:09:22 GMT
- Title: Generative Multimodal Models are In-Context Learners
- Authors: Quan Sun, Yufeng Cui, Xiaosong Zhang, Fan Zhang, Qiying Yu, Zhengxiong Luo, Yueze Wang, Yongming Rao, Jingjing Liu, Tiejun Huang, Xinlong Wang,
- Abstract summary: We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences.
Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning.
- Score: 60.50927925426832
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human ability to easily solve multimodal tasks in context (i.e., with only a few demonstrations or simple instructions), is what current multimodal systems have largely struggled to imitate. In this work, we demonstrate that the task-agnostic in-context learning capabilities of large multimodal models can be significantly enhanced by effective scaling-up. We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences with a unified autoregressive objective. Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning, such as visual prompting and object-grounded generation. The model sets a new record on multiple multimodal understanding tasks in few-shot settings. When instruction-tuned to follow specific instructions, Emu2 further achieves new state-of-the-art on challenging tasks such as question answering benchmarks for large multimodal models and open-ended subject-driven generation. These achievements demonstrate that Emu2 can serve as a base model and general-purpose interface for a wide range of multimodal tasks. Code and models are publicly available to facilitate future research.
Related papers
- Multimodal Large Language Models and Tunings: Vision, Language, Sensors, Audio, and Beyond [51.141270065306514]
This tutorial aims to equip researchers, practitioners, and newcomers with the knowledge and skills to leverage multimodal AI.
We will cover the latest multimodal datasets and pretrained models, including those beyond vision and language.
Hands-on laboratories will offer practical experience with state-of-the-art multimodal models.
arXiv Detail & Related papers (2024-10-08T01:41:56Z) - Multi-Modal Generative AI: Multi-modal LLM, Diffusion and Beyond [48.43910061720815]
Multi-modal generative AI has received increasing attention in both academia and industry.
One natural question arises: Is it possible to have a unified model for both understanding and generation?
arXiv Detail & Related papers (2024-09-23T13:16:09Z) - Alt-MoE: Multimodal Alignment via Alternating Optimization of Multi-directional MoE with Unimodal Models [7.134682404460003]
We introduce a novel training framework, Alt-MoE, which employs the Mixture of Experts (MoE) as a unified multi-directional connector across modalities.
Our methodology has been validated on several well-performing uni-modal models.
arXiv Detail & Related papers (2024-09-09T10:40:50Z) - IWISDM: Assessing instruction following in multimodal models at scale [1.2320972303448239]
We introduce the instructed-Virtual VISual Decision Making (iWISDM) environment engineered to generate a limitless array of vision-language tasks.
Using iWISDM, we compiled three distinct benchmarks of instruction following visual tasks across varying complexity levels.
Our findings establish iWISDM as a robust benchmark for assessing the instructional adherence of both existing and emergent multimodal models.
arXiv Detail & Related papers (2024-06-20T14:09:54Z) - 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities [17.374241865041856]
We show the possibility of training one model to solve at least 3x more tasks/modalities than existing ones and doing so without a loss in performance.
We successfully scale the training to a three billion parameter model using tens of modalities and different datasets.
The resulting models and training code are open sourced at 4m.epfl.ch.
arXiv Detail & Related papers (2024-06-13T17:59:42Z) - Delving into Multi-modal Multi-task Foundation Models for Road Scene Understanding: From Learning Paradigm Perspectives [56.2139730920855]
We present a systematic analysis of MM-VUFMs specifically designed for road scenes.
Our objective is to provide a comprehensive overview of common practices, referring to task-specific models, unified multi-modal models, unified multi-task models, and foundation model prompting techniques.
We provide insights into key challenges and future trends, such as closed-loop driving systems, interpretability, embodied driving agents, and world models.
arXiv Detail & Related papers (2024-02-05T12:47:09Z) - mPLUG-Owl2: Revolutionizing Multi-modal Large Language Model with
Modality Collaboration [74.31268379055201]
mPLUG-Owl2 is a versatile multi-modal large language model.
It effectively leverages modality collaboration to improve performance in both text and multi-modal tasks.
arXiv Detail & Related papers (2023-11-07T14:21:29Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
We propose a decoder-only model for multimodal tasks, which is surprisingly effective in jointly learning of these disparate vision-language tasks.
We demonstrate that joint learning of these diverse objectives is simple, effective, and maximizes the weight-sharing of the model across these tasks.
Our model achieves the state of the art on image-text and text-image retrieval, video question answering and open-vocabulary detection tasks, outperforming much larger and more extensively trained foundational models.
arXiv Detail & Related papers (2023-03-29T16:42:30Z) - OFASys: A Multi-Modal Multi-Task Learning System for Building Generalist
Models [72.8156832931841]
Generalist models are capable of performing diverse multi-modal tasks in a task-agnostic way within a single model.
We release a generalist model learning system, OFASys, built on top of a declarative task interface named multi-modal instruction.
arXiv Detail & Related papers (2022-12-08T17:07:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.