論文の概要: Pre-Trained Model Recommendation for Downstream Fine-tuning
- arxiv url: http://arxiv.org/abs/2403.06382v1
- Date: Mon, 11 Mar 2024 02:24:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 20:30:26.964716
- Title: Pre-Trained Model Recommendation for Downstream Fine-tuning
- Title(参考訳): 下流微調整のための事前学習モデルレコメンデーション
- Authors: Jiameng Bai, Sai Wu, Jie Song, Junbo Zhao, Gang Chen
- Abstract要約: モデル選択は、市販の事前訓練されたモデルをランク付けし、新しいターゲットタスクに最も適したモデルを選択することを目的としている。
既存のモデル選択テクニックはスコープ内で制約されることが多く、モデルとタスク間の微妙な関係を見落としてしまう傾向があります。
我々は,多種多様な大規模モデルリポジトリを探索する実用的フレームワーク textbfFennec を提案する。
- 参考スコア(独自算出の注目度): 22.343011779348682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As a fundamental problem in transfer learning, model selection aims to rank
off-the-shelf pre-trained models and select the most suitable one for the new
target task. Existing model selection techniques are often constrained in their
scope and tend to overlook the nuanced relationships between models and tasks.
In this paper, we present a pragmatic framework \textbf{Fennec}, delving into a
diverse, large-scale model repository while meticulously considering the
intricate connections between tasks and models. The key insight is to map all
models and historical tasks into a transfer-related subspace, where the
distance between model vectors and task vectors represents the magnitude of
transferability. A large vision model, as a proxy, infers a new task's
representation in the transfer space, thereby circumventing the computational
burden of extensive forward passes. We also investigate the impact of the
inherent inductive bias of models on transfer results and propose a novel
method called \textbf{archi2vec} to encode the intricate structures of models.
The transfer score is computed through straightforward vector arithmetic with a
time complexity of $\mathcal{O}(1)$. Finally, we make a substantial
contribution to the field by releasing a comprehensive benchmark. We validate
the effectiveness of our framework through rigorous testing on two benchmarks.
The benchmark and the code will be publicly available in the near future.
- Abstract(参考訳): トランスファー学習の基本的な問題として、モデル選択は、既成の事前学習されたモデルをランク付けし、新しい対象タスクに最も適したモデルを選択することを目的としている。
既存のモデル選択テクニックは、しばしばそのスコープで制限され、モデルとタスクの間の微妙な関係を見落としがちである。
本稿では,タスクとモデル間の複雑な接続を慎重に検討しながら,多種多様な大規模モデルリポジトリを探索する実用的フレームワークであるtextbf{Fennec}を提案する。
重要な洞察は、すべてのモデルと過去のタスクを、モデルベクトルとタスクベクトルの間の距離が転送可能性の大きさを表す転送関連部分空間にマッピングすることである。
大きなビジョンモデルは、プロキシとして、転送空間における新しいタスクの表現を推論し、広範な前方パスの計算負荷を回避します。
また,モデル固有の帰納的バイアスが伝達結果に与える影響について検討し,モデルの複雑な構造を符号化する新しい方法である \textbf{archi2vec} を提案する。
転送スコアは直観的ベクトル演算によって計算され、時間複雑性は$\mathcal{o}(1)$である。
最後に、包括的なベンチマークをリリースすることによって、この分野にかなりの貢献をする。
2つのベンチマークで厳密なテストを行い、フレームワークの有効性を検証する。
ベンチマークとコードは、近い将来に公開される予定だ。
関連論文リスト
- Improving General Text Embedding Model: Tackling Task Conflict and Data Imbalance through Model Merging [33.23758947497205]
高度な埋め込みモデルは、通常、大規模マルチタスクデータと複数のタスクをまたいだ共同トレーニングを用いて開発される。
これらの課題を克服するために、独立に訓練されたモデルを組み合わせて勾配の衝突を緩和し、データ分散のバランスをとるモデルマージングについて検討する。
本稿では,勾配降下を用いたタスクベクトル空間内の最適モデル組合せを効率的に探索する新たな手法であるSelf Positioningを提案する。
論文 参考訳(メタデータ) (2024-10-19T08:39:21Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
任意の軌道をマスク入力として処理する統一軌道生成モデルUniTrajを提案する。
具体的には,空間特徴抽出のためのトランスフォーマーエンコーダ内に埋め込まれたゴースト空間マスキング(GSM)モジュールを導入する。
バスケットボール-U,サッカー-U,サッカー-Uの3つの実用的なスポーツゲームデータセットをベンチマークして評価を行った。
論文 参考訳(メタデータ) (2024-05-27T22:15:23Z) - A Two-Phase Recall-and-Select Framework for Fast Model Selection [13.385915962994806]
本稿では,2相モデル選択フレームワークを提案する。
これは、ベンチマークデータセット上でモデルのトレーニングパフォーマンスを活用することにより、堅牢なモデルを選択する効率を高めることを目的としている。
提案手法は,従来のベースライン法に比べて約3倍の速度でハイパフォーマンスモデルの選択を容易にすることが実証された。
論文 参考訳(メタデータ) (2024-03-28T14:44:44Z) - MTP: Advancing Remote Sensing Foundation Model via Multi-Task Pretraining [73.81862342673894]
ファンデーションモデルは、様々な画像解釈タスクを強化することで、リモートセンシング(RS)のランドスケープを再構築した。
事前訓練されたモデルを下流のタスクに転送することは、イメージ分類やオブジェクト識別タスクとして事前訓練の定式化によるタスクの相違に遭遇する可能性がある。
SAMRSデータセット上で、セマンティックセグメンテーション、インスタンスセグメンテーション、回転オブジェクト検出を含むマルチタスクによる事前トレーニングを行う。
我々のモデルは、シーン分類、水平・回転物体検出、セマンティックセグメンテーション、変化検出など、様々なRS下流タスクに基づいて微調整される。
論文 参考訳(メタデータ) (2024-03-20T09:17:22Z) - Building a Winning Team: Selecting Source Model Ensembles using a
Submodular Transferability Estimation Approach [20.86345962679122]
公開されている事前訓練されたモデルの目標タスクへの転送可能性の推定は、伝達学習タスクにとって重要な場所となっている。
本稿では, モデルアンサンブルの下流タスクへの転送可能性を評価するために, 最適なtranSportベースのsuBmOdular tRaNsferability Metrics(OSBORN)を提案する。
論文 参考訳(メタデータ) (2023-09-05T17:57:31Z) - $\Delta$-Patching: A Framework for Rapid Adaptation of Pre-trained
Convolutional Networks without Base Performance Loss [71.46601663956521]
大規模なデータセットで事前トレーニングされたモデルはしばしば、時間とともにやってくる新しいタスクやデータセットをサポートするように微調整される。
モデルコピーを格納することなく、効率よく微調整ニューラルネットワークモデルに$Delta$-Patchingを提案する。
我々の実験によると、$Delta$-Networksは、トレーニングされるパラメータのごく一部しか必要とせず、初期のモデルパッチ作業より優れています。
論文 参考訳(メタデータ) (2023-03-26T16:39:44Z) - SynBench: Task-Agnostic Benchmarking of Pretrained Representations using
Synthetic Data [78.21197488065177]
近年、下流のタスクで大規模なデータで事前訓練された微調整大型モデルが成功し、ディープラーニングにおける重要なパラダイムシフトにつながった。
本稿では,合成データを用いて事前学習した表現の質を測定するためのタスク非依存フレームワークであるtextitSynBenchを提案する。
論文 参考訳(メタデータ) (2022-10-06T15:25:00Z) - Bridging Pre-trained Models and Downstream Tasks for Source Code
Understanding [13.65914588243695]
本稿では,事前学習されたモデルとコード関連タスクをブリッジする手法を提案する。
我々は、下流データの多様性を豊かにする意味保存変換を利用する。
本稿では,既存の事前学習モデルを微調整するために,変換されたデータを手軽に整理するためのカリキュラム学習を紹介する。
論文 参考訳(メタデータ) (2021-12-04T07:21:28Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
転送学習は、大規模な"上流"データセットで事前訓練されたモデルが、"下流"データセットで良い結果を得るために適応される古典的なパラダイムである。
本研究では、ImageNetデータセットでトレーニングされた畳み込みニューラルネットワーク(CNN)のコンテキストにおいて、この現象を詳細に調査する。
スパースモデルでは, 高空間であっても, 高密度モデルの転送性能にマッチしたり, 性能に優れることを示す。
論文 参考訳(メタデータ) (2021-11-26T11:58:51Z) - Deep Ensembles for Low-Data Transfer Learning [21.578470914935938]
我々は、事前訓練されたモデルからアンサンブルを作成する様々な方法を研究する。
プレトレーニング自体が多様性の優れた源であることが示される。
本稿では,任意の下流データセットに対して,事前学習したモデルのサブセットを効率的に同定する実用的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-10-14T07:59:00Z) - Do Adversarially Robust ImageNet Models Transfer Better? [102.09335596483695]
逆向きに堅牢なモデルは、トランスファーラーニングに使用する場合、標準訓練されたモデルよりもよく機能する。
私たちの結果は、ロバストさが機能表現の改善につながるという最近の仮説と一致しています。
論文 参考訳(メタデータ) (2020-07-16T17:42:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。