What Makes Quantization for Large Language Models Hard? An Empirical
Study from the Lens of Perturbation
- URL: http://arxiv.org/abs/2403.06408v1
- Date: Mon, 11 Mar 2024 03:42:51 GMT
- Title: What Makes Quantization for Large Language Models Hard? An Empirical
Study from the Lens of Perturbation
- Authors: Zhuocheng Gong, Jiahao Liu, Jingang Wang, Xunliang Cai, Dongyan Zhao,
Rui Yan
- Abstract summary: Quantization is a technique for improving the memory and computational efficiency of large language models (LLMs)
We propose a new perspective on quantization, viewing it as perturbations added to the weights and activations of LLMs.
We conduct experiments with various artificial perturbations to explore their impact on LLM performance.
- Score: 55.153595212571375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantization has emerged as a promising technique for improving the memory
and computational efficiency of large language models (LLMs). Though the
trade-off between performance and efficiency is well-known, there is still much
to be learned about the relationship between quantization and LLM performance.
To shed light on this relationship, we propose a new perspective on
quantization, viewing it as perturbations added to the weights and activations
of LLMs. We call this approach "the lens of perturbation". Using this lens, we
conduct experiments with various artificial perturbations to explore their
impact on LLM performance. Our findings reveal several connections between the
properties of perturbations and LLM performance, providing insights into the
failure cases of uniform quantization and suggesting potential solutions to
improve the robustness of LLM quantization. To demonstrate the significance of
our findings, we implement a simple non-uniform quantization approach based on
our insights. Our experiments show that this approach achieves minimal
performance degradation on both 4-bit weight quantization and 8-bit
quantization for weights and activations. These results validate the
correctness of our approach and highlight its potential to improve the
efficiency of LLMs without sacrificing performance.
Related papers
- Q-VLM: Post-training Quantization for Large Vision-Language Models [73.19871905102545]
We propose a post-training quantization framework of large vision-language models (LVLMs) for efficient multi-modal inference.
We mine the cross-layer dependency that significantly influences discretization errors of the entire vision-language model, and embed this dependency into optimal quantization strategy.
Experimental results demonstrate that our method compresses the memory by 2.78x and increase generate speed by 1.44x about 13B LLaVA model without performance degradation.
arXiv Detail & Related papers (2024-10-10T17:02:48Z) - Deconfounded Causality-aware Parameter-Efficient Fine-Tuning for Problem-Solving Improvement of LLMs [12.48241058167222]
Large Language Models (LLMs) have demonstrated remarkable efficiency in tackling various tasks based on human instructions.
But studies reveal that they often struggle with tasks requiring reasoning, such as math or physics limitation.
This raises questions about whether LLMs truly comprehend embedded knowledge or merely learn to replicate the token distribution without a true understanding of the content.
We propose Decon Causal Adaptation (DCA), a novel parameter-efficient fine-tuning (PEFT) method to enhance the model's reasoning capabilities.
arXiv Detail & Related papers (2024-09-04T13:17:09Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - A Comprehensive Evaluation of Quantization Strategies for Large Language Models [42.03804933928227]
Increasing the number of parameters in large language models (LLMs) usually improves performance in downstream tasks but raises compute and memory costs.
Quantization techniques, which reduce the bits needed for model weights or activations with minimal performance loss, have become popular.
We propose a structured evaluation framework consisting of three critical dimensions: knowledge & capacity, (2) alignment, and (3) efficiency.
arXiv Detail & Related papers (2024-02-26T17:45:36Z) - ApiQ: Finetuning of 2-Bit Quantized Large Language Model [12.328293460903911]
ApiQ is designed to restore the lost information from quantization by concurrently initializing the LoRA components and quantizing the weights of LLMs.
It consistently achieves superior finetuning results across various bit-widths.
arXiv Detail & Related papers (2024-02-07T09:36:54Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - Do Emergent Abilities Exist in Quantized Large Language Models: An
Empirical Study [90.34226812493083]
This work aims to investigate the impact of quantization on emphemergent abilities, which are important characteristics that distinguish LLMs from small language models.
Our empirical experiments show that these emergent abilities still exist in 4-bit quantization models, while 2-bit models encounter severe performance degradation.
To improve the performance of low-bit models, we conduct two special experiments: (1) fine-gained impact analysis that studies which components (or substructures) are more sensitive to quantization, and (2) performance compensation through model fine-tuning.
arXiv Detail & Related papers (2023-07-16T15:11:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.