CogSteer: Cognition-Inspired Selective Layer Intervention for Efficiently Steering Large Language Models
- URL: http://arxiv.org/abs/2410.17714v2
- Date: Tue, 18 Feb 2025 10:09:47 GMT
- Title: CogSteer: Cognition-Inspired Selective Layer Intervention for Efficiently Steering Large Language Models
- Authors: Xintong Wang, Jingheng Pan, Liang Ding, Longyue Wang, Longqin Jiang, Xingshan Li, Chris Biemann,
- Abstract summary: Large Language Models (LLMs) achieve remarkable performance through pretraining on extensive data.
The lack of interpretability in their underlying mechanisms limits the ability to effectively steer LLMs for specific applications.
In this work, we investigate the mechanisms of LLMs from a cognitive perspective using eye movement measures.
- Score: 37.476241509187304
- License:
- Abstract: Large Language Models (LLMs) achieve remarkable performance through pretraining on extensive data. This enables efficient adaptation to diverse downstream tasks. However, the lack of interpretability in their underlying mechanisms limits the ability to effectively steer LLMs for specific applications. In this work, we investigate the intrinsic mechanisms of LLMs from a cognitive perspective using eye movement measures. Specifically, we analyze the layer-wise correlation between human cognitive indicators and LLM representations. Building on these insights, we propose a heuristic approach for selecting the optimal steering layer to modulate LLM semantics. To this end, we introduce an efficient selective layer intervention based on prominent parameter-efficient fine-tuning methods, which conventionally adjust either all layers or only the final layer. Additionally, we present an implicit layer contrastive intervention during inference to steer LLMs away from toxic outputs. Extensive experiments on natural language understanding, reasoning, and generation tasks, conducted on GPT-2, LLaMa2-7B, and Mixtral-7B, demonstrate the effectiveness and efficiency of our approach. As a model-agnostic framework, it enhances the interpretability of LLMs while improving efficiency for safe deployment.
Related papers
- Adaptive Pruning for Large Language Models with Structural Importance Awareness [66.2690963378878]
Large language models (LLMs) have significantly improved language understanding and generation capabilities.
LLMs are difficult to deploy on resource-constrained edge devices due to their high computational and storage resource demands.
We propose structurally-aware adaptive pruning (SAAP) to significantly reduce the computational and memory costs while maintaining model performance.
arXiv Detail & Related papers (2024-12-19T18:08:04Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
In this paper, we analyze the MLLM instruction tuning from both theoretical and empirical perspectives.
Inspired by our findings, we propose a measurement to quantitatively evaluate the learning balance.
In addition, we introduce an auxiliary loss regularization method to promote updating of the generation distribution of MLLMs.
arXiv Detail & Related papers (2024-07-29T23:18:55Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
We propose a novel framework for multi-agent collaboration that introduces Reinforced Advantage feedback (ReAd) for efficient self-refinement of plans.
We provide theoretical analysis by extending advantage-weighted regression in reinforcement learning to multi-agent systems.
Experiments on Over-AI and a difficult variant of RoCoBench show that ReAd surpasses baselines in success rate, and also significantly decreases the interaction steps of agents.
arXiv Detail & Related papers (2024-05-23T08:33:19Z) - Extending Token Computation for LLM Reasoning [5.801044612920816]
Large Language Models (LLMs) are pivotal in advancing natural language processing.
LLMs often struggle with complex reasoning tasks due to inefficient attention distributions.
We introduce a novel method for extending computed tokens in the Chain-of-Thought process, utilizing attention mechanism optimization.
arXiv Detail & Related papers (2024-03-22T03:23:58Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Why Lift so Heavy? Slimming Large Language Models by Cutting Off the
Layers [2.1165011830664673]
Large Language Models (LLMs) possess outstanding capabilities in addressing various natural language processing (NLP) tasks.
The sheer size of these models poses challenges in terms of storage, training and inference due to the inclusion of billions of parameters through layer stacking.
We show that even with fewer layers, LLMs maintain similar or better performance levels, particularly in prompt-based fine-tuning for text classification tasks.
arXiv Detail & Related papers (2024-02-18T20:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.