Joint-Embedding Masked Autoencoder for Self-supervised Learning of
Dynamic Functional Connectivity from the Human Brain
- URL: http://arxiv.org/abs/2403.06432v1
- Date: Mon, 11 Mar 2024 04:49:41 GMT
- Title: Joint-Embedding Masked Autoencoder for Self-supervised Learning of
Dynamic Functional Connectivity from the Human Brain
- Authors: Jungwon Choi, Hyungi Lee, Byung-Hoon Kim, Juho Lee
- Abstract summary: Graph Neural Networks (GNNs) have shown promise in learning dynamic functional connectivity for distinguishing phenotypes from human brain networks.
We introduce the Spatio-Temporal Joint Embedding Masked Autoencoder (ST-JEMA), drawing inspiration from the Joint Embedding Predictive Architecture (JEPA) in computer vision.
- Score: 18.165807360855435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have shown promise in learning dynamic
functional connectivity for distinguishing phenotypes from human brain
networks. However, obtaining extensive labeled clinical data for training is
often resource-intensive, making practical application difficult. Leveraging
unlabeled data thus becomes crucial for representation learning in a
label-scarce setting. Although generative self-supervised learning techniques,
especially masked autoencoders, have shown promising results in representation
learning in various domains, their application to dynamic graphs for dynamic
functional connectivity remains underexplored, facing challenges in capturing
high-level semantic representations. Here, we introduce the Spatio-Temporal
Joint Embedding Masked Autoencoder (ST-JEMA), drawing inspiration from the
Joint Embedding Predictive Architecture (JEPA) in computer vision. ST-JEMA
employs a JEPA-inspired strategy for reconstructing dynamic graphs, which
enables the learning of higher-level semantic representations considering
temporal perspectives, addressing the challenges in fMRI data representation
learning. Utilizing the large-scale UK Biobank dataset for self-supervised
learning, ST-JEMA shows exceptional representation learning performance on
dynamic functional connectivity demonstrating superiority over previous methods
in predicting phenotypes and psychiatric diagnoses across eight benchmark fMRI
datasets even with limited samples and effectiveness of temporal reconstruction
on missing data scenarios. These findings highlight the potential of our
approach as a robust representation learning method for leveraging label-scarce
fMRI data.
Related papers
- DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
Most rs-fMRI studies compute a single static functional connectivity matrix across brain regions of interest.
These approaches are at risk of oversimplifying brain dynamics and lack proper consideration of the goal at hand.
We propose a novel interpretable deep learning framework that learns goal-specific functional connectivity matrix directly from time series.
arXiv Detail & Related papers (2024-05-19T23:35:06Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - A Hybrid End-to-End Spatio-Temporal Attention Neural Network with
Graph-Smooth Signals for EEG Emotion Recognition [1.6328866317851187]
We introduce a deep neural network that acquires interpretable representations by a hybrid structure of network-temporal encoding and recurrent attention blocks.
We demonstrate that our proposed architecture exceeds state-of-the-art results for emotion classification on the publicly available DEAP dataset.
arXiv Detail & Related papers (2023-07-06T15:35:14Z) - Deep Representations for Time-varying Brain Datasets [4.129225533930966]
This paper builds an efficient graph neural network model that incorporates both region-mapped fMRI sequences and structural connectivities as inputs.
We find good representations of the latent brain dynamics through learning sample-level adaptive adjacency matrices.
These modules can be easily adapted to and are potentially useful for other applications outside the neuroscience domain.
arXiv Detail & Related papers (2022-05-23T21:57:31Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
Speech emotion recognition (SER) is a challenging task that plays a crucial role in natural human-computer interaction.
One of the main challenges in SER is data scarcity.
We propose a transfer learning strategy combined with spectrogram augmentation.
arXiv Detail & Related papers (2021-08-05T10:39:39Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.