Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant
- URL: http://arxiv.org/abs/2312.14847v3
- Date: Thu, 5 Sep 2024 12:59:56 GMT
- Title: Large Scale Training of Graph Neural Networks for Optimal Markov-Chain Partitioning Using the Kemeny Constant
- Authors: Sam Alexander Martino, João Morado, Chenghao Li, Zhenghao Lu, Edina Rosta,
- Abstract summary: We propose several GNN-based architectures to tackle the graph partitioning problem for Markov Chains described as kinetic networks.
This approach aims to minimize how much a proposed partitioning changes the Kemeny constant.
We show how simple GraphSAGE-based GNNs with linear layers can outperform much larger and more expressive attention-based models in this context.
- Score: 1.8606770727950463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional clustering algorithms often struggle to capture the complex relationships within graphs and generalise to arbitrary clustering criteria. The emergence of graph neural networks (GNNs) as a powerful framework for learning representations of graph data provides new approaches to solving the problem. Previous work has shown GNNs to be capable of proposing partitionings using a variety of criteria, however, these approaches have not yet been extended to work on Markov chains or kinetic networks. These arise frequently in the study of molecular systems and are of particular interest to the biochemical modelling community. In this work, we propose several GNN-based architectures to tackle the graph partitioning problem for Markov Chains described as kinetic networks. This approach aims to minimize how much a proposed partitioning changes the Kemeny constant. We propose using an encoder-decoder architecture and show how simple GraphSAGE-based GNNs with linear layers can outperform much larger and more expressive attention-based models in this context. As a proof of concept, we first demonstrate the method's ability to cluster randomly connected graphs. We also use a linear chain architecture corresponding to a 1D free energy profile as our kinetic network. Subsequently, we demonstrate the effectiveness of our method through experiments on a data set derived from molecular dynamics. We compare the performance of our method to other partitioning techniques such as PCCA+. We explore the importance of feature and hyperparameter selection and propose a general strategy for large-scale parallel training of GNNs for discovering optimal graph partitionings.
Related papers
- Graph as a feature: improving node classification with non-neural graph-aware logistic regression [2.952177779219163]
Graph-aware Logistic Regression (GLR) is a non-neural model designed for node classification tasks.
Unlike traditional graph algorithms that use only a fraction of the information accessible to GNNs, our proposed model simultaneously leverages both node features and the relationships between entities.
arXiv Detail & Related papers (2024-11-19T08:32:14Z) - Spectral Greedy Coresets for Graph Neural Networks [61.24300262316091]
The ubiquity of large-scale graphs in node-classification tasks hinders the real-world applications of Graph Neural Networks (GNNs)
This paper studies graph coresets for GNNs and avoids the interdependence issue by selecting ego-graphs based on their spectral embeddings.
Our spectral greedy graph coreset (SGGC) scales to graphs with millions of nodes, obviates the need for model pre-training, and applies to low-homophily graphs.
arXiv Detail & Related papers (2024-05-27T17:52:12Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
Graph matching is a commonly used technique in computer vision and pattern recognition.
Recent data-driven approaches have improved the graph matching accuracy remarkably.
We propose a graph neural network (GNN) based approach to combine the advantages of data-driven and traditional methods.
arXiv Detail & Related papers (2024-03-11T06:34:05Z) - DGCLUSTER: A Neural Framework for Attributed Graph Clustering via
Modularity Maximization [5.329981192545312]
We propose a novel method, DGCluster, which primarily optimize the modularity objective using graph neural networks and scales linearly with the graph size.
We extensively test DGCluster on several real-world datasets of varying sizes, across multiple popular cluster quality metrics.
Our approach consistently outperforms the state-of-the-art methods, demonstrating significant performance gains in almost all settings.
arXiv Detail & Related papers (2023-12-20T01:43:55Z) - Self-supervision meets kernel graph neural models: From architecture to
augmentations [36.388069423383286]
We improve the design and learning of kernel graph neural networks (KGNNs)
We develop a novel structure-preserving graph data augmentation method called latent graph augmentation (LGA)
Our proposed model achieves competitive performance comparable to or sometimes outperforming state-of-the-art graph representation learning frameworks.
arXiv Detail & Related papers (2023-10-17T14:04:22Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Hierarchical Message-Passing Graph Neural Networks [12.207978823927386]
We propose a novel Hierarchical Message-passing Graph Neural Networks framework.
Key idea is generating a hierarchical structure that re-organises all nodes in a flat graph into multi-level super graphs.
We present the first model to implement this framework, termed Hierarchical Community-aware Graph Neural Network (HC-GNN)
arXiv Detail & Related papers (2020-09-08T13:11:07Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
Graph auto-encoder (GAE) models are based on semi-supervised graph convolution networks (GCN)
We design a specific GAE-based model for graph clustering to be consistent with the theory, namely Embedding Graph Auto-Encoder (EGAE)
EGAE consists of one encoder and dual decoders.
arXiv Detail & Related papers (2020-02-20T09:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.