論文の概要: Point Mamba: A Novel Point Cloud Backbone Based on State Space Model
with Octree-Based Ordering Strategy
- arxiv url: http://arxiv.org/abs/2403.06467v1
- Date: Mon, 11 Mar 2024 07:07:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 20:00:18.767092
- Title: Point Mamba: A Novel Point Cloud Backbone Based on State Space Model
with Octree-Based Ordering Strategy
- Title(参考訳): Point Mamba:Octreeベースの順序付け戦略を備えた状態空間モデルに基づく新しいポイントクラウドバックボーン
- Authors: Jiuming Liu, Ruiji Yu, Yian Wang, Yu Zheng, Tianchen Deng, Weicai Ye,
Hesheng Wang
- Abstract要約: 我々は、因果性を考慮した注文機構を備えた、新しいSSMベースのポイントクラウド処理バックボーン、Point Mambaを提案する。
本手法は, 変圧器をベースとした変圧器と比較して, 93.4%の精度と75.7mIOUの精度を実現している。
提案手法は,SSMが点雲理解において一般的なバックボーンとして機能する可能性を示す。
- 参考スコア(独自算出の注目度): 15.785841856510793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, state space model (SSM) has gained great attention due to its
promising performance, linear complexity, and long sequence modeling ability in
both language and image domains. However, it is non-trivial to extend SSM to
the point cloud field, because of the causality requirement of SSM and the
disorder and irregularity nature of point clouds. In this paper, we propose a
novel SSM-based point cloud processing backbone, named Point Mamba, with a
causality-aware ordering mechanism. To construct the causal dependency
relationship, we design an octree-based ordering strategy on raw irregular
points, globally sorting points in a z-order sequence and also retaining their
spatial proximity. Our method achieves state-of-the-art performance compared
with transformer-based counterparts, with 93.4% accuracy and 75.7 mIOU
respectively on the ModelNet40 classification dataset and ScanNet semantic
segmentation dataset. Furthermore, our Point Mamba has linear complexity, which
is more efficient than transformer-based methods. Our method demonstrates the
great potential that SSM can serve as a generic backbone in point cloud
understanding. Codes are released at https://github.com/IRMVLab/Point-Mamba.
- Abstract(参考訳): 近年、状態空間モデル (SSM) が注目されているのは、言語領域と画像領域の両方において、その有望な性能、線形複雑性、長いシーケンスモデリング能力である。
しかし、ssmの因果性要件と点雲の不規則性と不規則性のため、ssmを点クラウドフィールドに拡張するのは自明ではない。
本稿では,因果性を考慮した順序付け機構を備えた,新しいSSMベースのポイントクラウド処理バックボーンであるPoint Mambaを提案する。
因果関係を構築するために, 生不規則点上のオクツリーに基づく順序付け戦略を設計し, z-次列内の点をグローバルにソートし, 空間的近接性を保持する。
本手法は,modelnet40分類データセットとscannetセマンティクスセグメンテーションデータセットにおいて,93.4%の精度と75.7miouのトランスフォーマに基づいて,最先端の性能を実現する。
さらに, 点mambaは線形複雑性を持ち, トランスフォーマー法よりも効率的である。
提案手法は,SSMが点雲理解において一般的なバックボーンとして機能する可能性を示す。
コードはhttps://github.com/irmvlab/point-mambaでリリースされる。
関連論文リスト
- Bidirectional Gated Mamba for Sequential Recommendation [56.85338055215429]
最近の進歩であるMambaは、時系列予測において例外的なパフォーマンスを示した。
SIGMA(Selective Gated Mamba)と呼ばれる,シークエンシャルレコメンデーションのための新しいフレームワークを紹介する。
以上の結果から,SIGMAは5つの実世界のデータセットにおいて,現在のモデルよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-08-21T09:12:59Z) - Serialized Point Mamba: A Serialized Point Cloud Mamba Segmentation Model [9.718016281821471]
シリアライズされたポイントクラウドマンバモデル(シリアライズされたポイントマンバ)を開発した。
自然言語処理におけるMambaモデルの成功に触発されて,Serialized Point Cloud Mamba Modelを提案する。
Scannetでは76.8 mIoU、S3DISでは70.3 mIoUが達成された。
論文 参考訳(メタデータ) (2024-07-17T05:26:58Z) - Mamba24/8D: Enhancing Global Interaction in Point Clouds via State Space Model [37.375866491592305]
私たちは、ポイントクラウドドメインにSSMベースのアーキテクチャであるMambaを紹介します。
本稿では,線形複雑性下でのグローバルモデリング能力の強いMamba24/8Dを提案する。
Mamba24/8Dは、複数の3Dポイントクラウドセグメンテーションタスクにおける技術結果の状態を取得する。
論文 参考訳(メタデータ) (2024-06-25T10:23:53Z) - Mamba3D: Enhancing Local Features for 3D Point Cloud Analysis via State Space Model [18.30032389736101]
状態空間モデル(SSM)に基づくMambaモデルは、線形複雑性のみを持つ複数の領域でTransformerより優れている。
我々は,局所的特徴抽出を強化するために,ポイントクラウド学習に適した状態空間モデルであるMamba3Dを提案する。
論文 参考訳(メタデータ) (2024-04-23T12:20:27Z) - Point Cloud Mamba: Point Cloud Learning via State Space Model [73.7454734756626]
我々は,マンバをベースとしたポイントクラウド法が,トランスフォーマや多層パーセプトロン(MLP)に基づく従来手法よりも優れていることを示す。
特に,マルチ層パーセプトロン(MLP)を用いて,マンバをベースとした点雲法が従来手法より優れていることを示す。
Point Cloud Mambaは、最先端(SOTA)のポイントベースメソッドであるPointNeXtを超え、ScanNN、ModelNet40、ShapeNetPart、S3DISデータセット上での新たなSOTAパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-03-01T18:59:03Z) - PointMamba: A Simple State Space Model for Point Cloud Analysis [65.59944745840866]
我々は、最近の代表的状態空間モデル(SSM)であるMambaの成功を、NLPからポイントクラウド分析タスクへ転送するPointMambaを提案する。
従来のトランスフォーマーとは異なり、PointMambaは線形複雑性アルゴリズムを採用し、グローバルなモデリング能力を示しながら計算コストを大幅に削減する。
論文 参考訳(メタデータ) (2024-02-16T14:56:13Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
我々は、パッチレベルでポイントクラウドを混合し、混合ポイントクラウドのコンテンツベースターゲットを生成するPointPatchMixを提案する。
パッチスコアリングモジュールは、事前学習した教師モデルから、コンテンツに基づく重要度スコアに基づいて目標を割り当てる。
Point-MAE をベースラインとして,ScanObjectNN では86.3%,ModelNet40 では94.1% の精度で,従来の手法をかなり上回りました。
論文 参考訳(メタデータ) (2023-03-12T14:49:42Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - ASAP-Net: Attention and Structure Aware Point Cloud Sequence
Segmentation [49.15948235059343]
我々は、ASAPと呼ばれるフレキシブルモジュールにより、ポイントテンポラルクラウド機能をさらに改善する。
我々のASAPモジュールは、フレーム間の比較的情報性の高い局所的特徴を連続的に融合させるために、注意深い時間的埋め込み層を含んでいる。
本稿では、ポイントクラウドシーケンシャルセグメンテーションのための異なる計算バックボーンネットワークを持つASAPモジュールの一般化能力を示す。
論文 参考訳(メタデータ) (2020-08-12T07:37:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。