論文の概要: Toward Generalist Anomaly Detection via In-context Residual Learning
with Few-shot Sample Prompts
- arxiv url: http://arxiv.org/abs/2403.06495v2
- Date: Tue, 12 Mar 2024 12:52:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 11:22:33.490704
- Title: Toward Generalist Anomaly Detection via In-context Residual Learning
with Few-shot Sample Prompts
- Title(参考訳): サンプルプロンプを用いたコンテキスト内残差学習による一般異常検出に向けて
- Authors: Jiawen Zhu and Guansong Pang
- Abstract要約: Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、異なるアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
クエリ画像と数発のサンプルプロンプト間の残差の全体的評価に基づいて、通常のサンプルから異常を識別する補助データセットを用いて訓練する。
- 参考スコア(独自算出の注目度): 30.278418852521344
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the problem of Generalist Anomaly Detection (GAD), aiming
to train one single detection model that can generalize to detect anomalies in
diverse datasets from different application domains without any further
training on the target data. Some recent studies have shown that large
pre-trained Visual-Language Models (VLMs) like CLIP have strong generalization
capabilities on detecting industrial defects from various datasets, but their
methods rely heavily on handcrafted text prompts about defects, making them
difficult to generalize to anomalies in other applications, e.g., medical image
anomalies or semantic anomalies in natural images. In this work, we propose to
train a GAD model with few-shot normal images as sample prompts for AD on
diverse datasets on the fly. To this end, we introduce a novel approach that
learns an in-context residual learning model for GAD, termed InCTRL. It is
trained on an auxiliary dataset to discriminate anomalies from normal samples
based on a holistic evaluation of the residuals between query images and
few-shot normal sample prompts. Regardless of the datasets, per definition of
anomaly, larger residuals are expected for anomalies than normal samples,
thereby enabling InCTRL to generalize across different domains without further
training. Comprehensive experiments on nine AD datasets are performed to
establish a GAD benchmark that encapsulate the detection of industrial defect
anomalies, medical anomalies, and semantic anomalies in both one-vs-all and
multi-class setting, on which InCTRL is the best performer and significantly
outperforms state-of-the-art competing methods.
- Abstract(参考訳): 本稿では,GAD(Generalist Anomaly Detection)の問題点を考察し,対象データに対するさらなるトレーニングを行なわずに,異なるアプリケーションドメインからさまざまなデータセットの異常を検出するための1つの単一検出モデルを訓練することを目的とする。
最近の研究により、CLIPのような大規模な事前学習された視覚言語モデル(VLM)は、様々なデータセットから産業的欠陥を検出するための強力な一般化能力を持っていることが示されているが、それらの手法は欠陥に関する手作りのテキストプロンプトに大きく依存しているため、自然画像の医学的画像異常や意味的異常など他のアプリケーションでの異常への一般化が困難である。
そこで本研究では,様々なデータセットにおける広告のサンプルプロンプトとして,低ショット正規画像を用いたgadモデルを訓練することを提案する。
そこで本研究では,gadの文脈内残差学習モデルであるinctrlを学習する新しい手法を提案する。
クエリ画像と数発のサンプルプロンプト間の残差の全体的評価に基づいて、通常のサンプルから異常を識別する補助データセットを用いて訓練する。
データセットにかかわらず、異常の定義に従って、通常のサンプルよりも大きな残基が異常に対して期待されているため、InCTRLはさらなるトレーニングをすることなく、異なるドメインをまたいで一般化することができる。
9つのadデータセットに関する包括的な実験を行い,産業的欠陥,医療的異常,意味的異常の検出を包含するgadベンチマークを構築した。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection [30.679012320439625]
AnomalyCLIPはオブジェクトに依存しないテキストを学習し、画像の一般的な正規性と異常をキャプチャする。
非常に多様なクラスセマンティクスのデータセットにおける異常の検出とセグメンテーションにおいて、優れたゼロショット性能を実現する。
論文 参考訳(メタデータ) (2023-10-29T10:03:49Z) - Open-Set Multivariate Time-Series Anomaly Detection [7.127829790714167]
時系列異常検出法は、トレーニング期間中に通常のサンプルのみが利用可能であると仮定する。
監視された手法は、通常の異常や観察された異常を分類するために利用することができるが、訓練中に見られる異常に過度に適応する傾向がある。
MOSAD(Multivarate Open-Set Time-Series Anomaly Detector)と呼ばれるオープンセットTSAD問題に対処するアルゴリズムを提案する。
MOSADは、共有表現空間と、生成ヘッド、識別ヘッド、異常認識コントラストヘッドを含む特殊ヘッドを備えた、新しいマルチヘッドTSADフレームワークである。
論文 参考訳(メタデータ) (2023-10-18T19:55:11Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。