論文の概要: Tactical Decision Making for Autonomous Trucks by Deep Reinforcement
Learning with Total Cost of Operation Based Reward
- arxiv url: http://arxiv.org/abs/2403.06524v1
- Date: Mon, 11 Mar 2024 08:58:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:41:01.848879
- Title: Tactical Decision Making for Autonomous Trucks by Deep Reinforcement
Learning with Total Cost of Operation Based Reward
- Title(参考訳): 運転報酬総額を用いた深層強化学習による自律トラックの戦術的意思決定
- Authors: Deepthi Pathare, Leo Laine, Morteza Haghir Chehreghani
- Abstract要約: 自律トラックにおける戦術的意思決定のための深層強化学習フレームワークを開発した。
以上の結果から,ハイレベル意思決定プロセスと低レベル制御動作の分離が有用であることが示唆された。
- 参考スコア(独自算出の注目度): 4.404496835736175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We develop a deep reinforcement learning framework for tactical decision
making in an autonomous truck, specifically for Adaptive Cruise Control (ACC)
and lane change maneuvers in a highway scenario. Our results demonstrate that
it is beneficial to separate high-level decision-making processes and low-level
control actions between the reinforcement learning agent and the low-level
controllers based on physical models. In the following, we study optimizing the
performance with a realistic and multi-objective reward function based on Total
Cost of Operation (TCOP) of the truck using different approaches; by adding
weights to reward components, by normalizing the reward components and by using
curriculum learning techniques.
- Abstract(参考訳): 道路シナリオにおける適応クルーズ制御(acc)と車線変更操作に特化した,自律トラックにおける戦術的意思決定のための深層強化学習フレームワークを開発した。
本研究は,高次意思決定プロセスと低次制御動作を物理モデルに基づく強化学習エージェントと低次制御器で分離することが有用であることを示す。
下記の手法を用いて,トラックのトータル・コスト・オペレーティング(TCOP)に基づく現実的かつ多目的的な報酬関数を用いて,報酬成分の正規化とカリキュラム学習手法を用いて,報酬成分に重みを加えることにより,性能を最適化する。
関連論文リスト
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - Research on Autonomous Driving Decision-making Strategies based Deep Reinforcement Learning [8.794428617785869]
行動決定サブシステムは、自律運転システムの重要な構成要素である。
本研究では、自律的に学習し、運転戦略を最適化する高度な強化学習モデルを採用する。
論文 参考訳(メタデータ) (2024-08-06T10:24:54Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
スケールされたロボットカーは通常、車両の状態の推定と制御に特化したタスクを含む階層的な制御機構を備えている。
本稿では, (i) フェデレートされた拡張カルマンフィルタ (FEKF) と (ii) エキスパートデモレータを用いて訓練された新しい深部強化学習 (DRL) パストラッキングコントローラを提案する。
実験により検証されたモデルは、(i)FEKFの設計を支援するために使用され、(ii)DRLに基づく経路追跡アルゴリズムをトレーニングするためのデジタルツインとして機能する。
論文 参考訳(メタデータ) (2024-01-10T14:40:53Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Spatiotemporal Costmap Inference for MPC via Deep Inverse Reinforcement
Learning [27.243603228431564]
目標条件付き時間報酬関数を学習するIRLRLアルゴリズムを提案する。
結果として生じるコストマップは、Model Predictive Controllers (MPC) によってタスクの実行に使用される。
論文 参考訳(メタデータ) (2022-01-17T17:36:29Z) - Curriculum Learning for Safe Mapless Navigation [71.55718344087657]
本研究は,カリキュラム学習(CL)に基づくアプローチがエージェントのパフォーマンスに与える影響について検討する。
特に、ロボットマップレスナビゲーションの安全性に焦点をあて、標準的なエンドツーエンド(E2E)トレーニング戦略と比較する。
論文 参考訳(メタデータ) (2021-12-23T12:30:36Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Real-world Ride-hailing Vehicle Repositioning using Deep Reinforcement
Learning [52.2663102239029]
アイドルヘイリングプラットフォーム上での現実世界の車両の深層強化学習と意思決定時間計画に基づく新しい実用的枠組みを提示する。
本手法は,重み付きバッチ学習アルゴリズムを用いて乗車時の状態値関数を学習する。
配車シミュレーション環境におけるベースラインでアルゴリズムをベンチマークし、収益効率の向上における優位性を実証します。
論文 参考訳(メタデータ) (2021-03-08T05:34:05Z) - Affordance-based Reinforcement Learning for Urban Driving [3.507764811554557]
経路点と低次元視覚表現を用いた最適制御ポリシーを学習するための深層強化学習フレームワークを提案する。
スクラッチから訓練されたエージェントは、車線追従のタスクを学習し、区間間を走り回り、密集した交通状況でも他のアクターや信号機の前で立ち止まることを実証する。
論文 参考訳(メタデータ) (2021-01-15T05:21:25Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。