論文の概要: Guiding Clinical Reasoning with Large Language Models via Knowledge Seeds
- arxiv url: http://arxiv.org/abs/2403.06609v2
- Date: Sat, 8 Jun 2024 04:14:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 00:53:58.335208
- Title: Guiding Clinical Reasoning with Large Language Models via Knowledge Seeds
- Title(参考訳): 知識シードを用いた大規模言語モデルによる臨床推論の指導
- Authors: Jiageng WU, Xian Wu, Jie Yang,
- Abstract要約: 臨床推論(英: Clinical reasoning)とは、医師が患者の評価と管理に用いている認知過程のことである。
本研究では,医学的知識によるLCMの強化を目的とした新しい枠組みであるICP(In-Context Padding)を提案する。
- 参考スコア(独自算出の注目度): 32.99251005719732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clinical reasoning refers to the cognitive process that physicians employ in evaluating and managing patients. This process typically involves suggesting necessary examinations, diagnosing patients' diseases, and deciding on appropriate therapies, etc. Accurate clinical reasoning requires extensive medical knowledge and rich clinical experience, setting a high bar for physicians. This is particularly challenging in developing countries due to the overwhelming number of patients and limited physician resources, contributing significantly to global health inequity and necessitating automated clinical reasoning approaches. Recently, the emergence of large language models (LLMs) such as ChatGPT and GPT-4 have demonstrated their potential in clinical reasoning. However, these LLMs are prone to hallucination problems, and the reasoning process of LLMs may not align with the clinical decision path of physicians. In this study, we introduce a novel framework, In-Context Padding (ICP), designed to enhance LLMs with medical knowledge. Specifically, we infer critical clinical reasoning elements (referred to as knowledge seeds) and use these as anchors to guide the generation process of LLMs. Experiments on two clinical question datasets demonstrate that ICP significantly improves the clinical reasoning ability of LLMs.
- Abstract(参考訳): 臨床推論(英: Clinical reasoning)とは、医師が患者の評価と管理に用いている認知過程のことである。
このプロセスは通常、必要な検査、患者の病気の診断、適切な治療法の決定などを提案する。
正確な臨床推論には広範な医学的知識と豊富な臨床経験が必要であり、医師にとって高い基準を設定できる。
これは、患者が圧倒的に多く、医師のリソースが限られているため、発展途上国では特に困難であり、世界的な健康上の不平等に大きく寄与し、自動的な臨床推論アプローチを必要としている。
近年,ChatGPT や GPT-4 などの大型言語モデル (LLM) の出現は臨床推論においてその可能性を示している。
しかし、これらのLSMは幻覚障害を起こしやすいため、LSMの推論過程は、医師の臨床的決定経路と一致しない可能性がある。
本研究では,医学的知識によるLCMの強化を目的とした新しい枠組みであるICP(In-Context Padding)を提案する。
具体的には、重要な臨床理由付け要素(知識種)を推測し、これらをアンカーとしてLLMの生成過程を導出する。
2つの臨床質問データセットの実験により、ICPはLSMの臨床的推論能力を大幅に改善することが示された。
関連論文リスト
- CliBench: Multifaceted Evaluation of Large Language Models in Clinical Decisions on Diagnoses, Procedures, Lab Tests Orders and Prescriptions [16.310913127940857]
我々はMIMIC IVデータセットから開発された新しいベンチマークであるCliBenchを紹介する。
このベンチマークは、臨床診断におけるLSMの能力を包括的かつ現実的に評価する。
臨床診断の熟練度を評価するため,先進LSMのゼロショット評価を行った。
論文 参考訳(メタデータ) (2024-06-14T11:10:17Z) - Dr-LLaVA: Visual Instruction Tuning with Symbolic Clinical Grounding [53.629132242389716]
VLM(Vision-Language Models)は、医用画像を分析し、自然言語の相互作用に関与することによって、臨床医を支援する。
VLMはしばしば「幻覚的」な振る舞いを示し、文脈的マルチモーダル情報に基づかないテキスト出力を生成する。
本稿では,臨床推論の象徴的表現を用いて医療知識にVLMを基盤とする新たなアライメントアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T23:19:28Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Generative Large Language Models are autonomous practitioners of
evidence-based medicine [27.229179922424063]
EBM(エビデンス・ベース・メディカル)は、臨床医学の基礎であり、臨床医が継続的に知識を更新し、患者医療に最良の臨床証拠を適用する必要がある。
EBMの実践は、医学研究の急速な進歩による課題に直面し、臨床医に情報過負荷をもたらす。
人工知能(AI)の統合、特にジェネレーティブ・大型言語モデル(LLM)は、この複雑さを管理するための有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-01-05T15:09:57Z) - MedBench: A Large-Scale Chinese Benchmark for Evaluating Medical Large
Language Models [56.36916128631784]
中国の医療分野の総合的なベンチマークであるMedBenchを紹介する。
このベンチマークは、中国の医療ライセンス試験、居住者標準化訓練試験、および現実世界のクリニックの4つの主要なコンポーネントで構成されている。
幅広い実験を行い, 多様な視点から詳細な分析を行い, 以下の結果を得た。
論文 参考訳(メタデータ) (2023-12-20T07:01:49Z) - Large Language Models are Clinical Reasoners: Reasoning-Aware Diagnosis Framework with Prompt-Generated Rationales [15.362903610463285]
本稿では,素早い学習を通して診断過程を合理化する「推論認識」診断フレームワークを提案する。
そこで本研究では,実世界の臨床環境に対する機械生成的合理化の可能性を評価するための新しい基準セットを提案する。
論文 参考訳(メタデータ) (2023-12-12T16:14:45Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - An Empirical Evaluation of Prompting Strategies for Large Language
Models in Zero-Shot Clinical Natural Language Processing [4.758617742396169]
本研究は,5つのNLPタスクに対する即時エンジニアリングに関する包括的,系統的研究である。
近年の文献では, 単純な接頭辞, 単純なクローゼ, 思考の連鎖, 予測プロンプトなどが提案されている。
臨床NLPにおけるLCMの迅速なエンジニアリングのための新しい知見とガイドラインを提供する。
論文 参考訳(メタデータ) (2023-09-14T19:35:00Z) - Diagnostic Reasoning Prompts Reveal the Potential for Large Language
Model Interpretability in Medicine [4.773117448586697]
そこで我々は,大言語モデル(LLM)が臨床推論を実行し,正確な診断を行うことができるかどうかを,新たな診断推論プロンプトを開発した。
GPT4は診断精度を犠牲にすることなく臨床医の一般的な臨床推論過程を模倣することができる。
論文 参考訳(メタデータ) (2023-08-13T19:04:07Z) - VBridge: Connecting the Dots Between Features, Explanations, and Data
for Healthcare Models [85.4333256782337]
VBridgeは、臨床医の意思決定ワークフローに機械学習の説明をシームレスに組み込むビジュアル分析ツールである。
我々は,臨床医がMLの特徴に慣れていないこと,文脈情報の欠如,コホートレベルの証拠の必要性など,3つの重要な課題を特定した。
症例スタディと専門医4名のインタビューを通じて, VBridgeの有効性を実証した。
論文 参考訳(メタデータ) (2021-08-04T17:34:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。