論文の概要: Can LLMs Support Medical Knowledge Imputation? An Evaluation-Based Perspective
- arxiv url: http://arxiv.org/abs/2503.22954v1
- Date: Sat, 29 Mar 2025 02:52:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 19:35:56.856194
- Title: Can LLMs Support Medical Knowledge Imputation? An Evaluation-Based Perspective
- Title(参考訳): LLMは医療知識インプットを支援するか? : 評価に基づく視点
- Authors: Xinyu Yao, Aditya Sannabhadti, Holly Wiberg, Karmel S. Shehadeh, Rema Padman,
- Abstract要約: 我々は,Large Language Models (LLMs) を用いて,欠落した治療関係を計算した。
LLMは、知識増強において有望な能力を提供するが、医療知識計算におけるそれらの応用は、重大なリスクをもたらす。
本研究は, 臨床ガイドラインの不整合, 患者の安全性への潜在的なリスクなど, 重大な限界を指摘した。
- 参考スコア(独自算出の注目度): 1.4913052010438639
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical knowledge graphs (KGs) are essential for clinical decision support and biomedical research, yet they often exhibit incompleteness due to knowledge gaps and structural limitations in medical coding systems. This issue is particularly evident in treatment mapping, where coding systems such as ICD, Mondo, and ATC lack comprehensive coverage, resulting in missing or inconsistent associations between diseases and their potential treatments. To address this issue, we have explored the use of Large Language Models (LLMs) for imputing missing treatment relationships. Although LLMs offer promising capabilities in knowledge augmentation, their application in medical knowledge imputation presents significant risks, including factual inaccuracies, hallucinated associations, and instability between and within LLMs. In this study, we systematically evaluate LLM-driven treatment mapping, assessing its reliability through benchmark comparisons. Our findings highlight critical limitations, including inconsistencies with established clinical guidelines and potential risks to patient safety. This study serves as a cautionary guide for researchers and practitioners, underscoring the importance of critical evaluation and hybrid approaches when leveraging LLMs to enhance treatment mappings on medical knowledge graphs.
- Abstract(参考訳): 医療知識グラフ (KGs) は臨床決定支援や生物医学研究に不可欠であるが、知識ギャップや医療符号化システムの構造的限界により、しばしば不完全性を示す。
この問題は特に治療マッピングにおいて明らかであり、ICD、Mondo、ATCのようなコーディングシステムには包括的カバレッジが欠如しており、疾患と潜在的な治療との間には不整合や矛盾が生じている。
この問題に対処するため、我々はLarge Language Models (LLMs) を用いて、欠落した治療関係を計算した。
LLMは知識増強に有望な能力を提供するが、その医療知識計算への応用は、事実的不正確性、幻覚的関連性、LSM間の不安定性など、重大なリスクをもたらす。
本研究では, LLMによる治療マッピングを系統的に評価し, ベンチマークによる信頼性の評価を行った。
本研究は, 臨床ガイドラインの不整合, 患者の安全性への潜在的なリスクなど, 重大な限界を指摘した。
本研究は, LLMを用いた医療知識グラフにおける治療マッピングの強化における批判的評価とハイブリッドアプローチの重要性を, 研究者や実践者にとっての注意ガイドとして機能する。
関連論文リスト
- Med-CoDE: Medical Critique based Disagreement Evaluation Framework [72.42301910238861]
医学的文脈における大きな言語モデル(LLM)の信頼性と精度は依然として重要な懸念点である。
現在の評価手法はロバスト性に欠けることが多く、LLMの性能を総合的に評価することができない。
我々は,これらの課題に対処するために,医療用LCMの特別設計評価フレームワークであるMed-CoDEを提案する。
論文 参考訳(メタデータ) (2025-04-21T16:51:11Z) - A Comprehensive Survey on the Trustworthiness of Large Language Models in Healthcare [5.765614539740084]
医療における大規模言語モデル(LLM)の適用は、臨床意思決定、医学研究、患者医療に革命をもたらす可能性がある。
LLMはますます医療システムに統合されているため、信頼性と倫理的展開を保証するために、いくつかの重要な課題に対処する必要がある。
論文 参考訳(メタデータ) (2025-02-21T18:43:06Z) - Fact or Guesswork? Evaluating Large Language Model's Medical Knowledge with Structured One-Hop Judgment [108.55277188617035]
大規模言語モデル(LLM)は、様々な下流タスクドメインで広く採用されているが、実際の医学的知識を直接呼び起こし適用する能力はいまだ探索されていない。
既存の医療QAベンチマークの多くは、複雑な推論やマルチホップ推論を評価しており、LSM固有の医療知識を推論能力から切り離すことが困難である。
LLMの1ホップの医療知識を測定するために特別に設計されたデータセットであるMedical Knowledge Judgmentを紹介する。
論文 参考訳(メタデータ) (2025-02-20T05:27:51Z) - Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented Generation (RAG) は,大規模言語モデル (LLM) の性能向上のための有望なアプローチとして登場した。
医療用QAデータセットに様々な補助的要素を提供するMedRGB(MedRGB)を導入する。
実験結果から,検索した文書のノイズや誤情報の処理能力に限界があることが判明した。
論文 参考訳(メタデータ) (2024-11-14T06:19:18Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KAREは、知識グラフ(KG)コミュニティレベルの検索と大規模言語モデル(LLM)推論を統合する新しいフレームワークである。
MIMIC-IIIでは最大10.8~15.0%、MIMIC-IVでは12.6~12.7%である。
論文 参考訳(メタデータ) (2024-10-06T18:46:28Z) - Large Language Models and User Trust: Consequence of Self-Referential Learning Loop and the Deskilling of Healthcare Professionals [1.6574413179773761]
本稿では, LLMにおける臨床医の信頼と, 主に人間生成コンテンツからAI生成コンテンツへのデータソースの影響との関係について検討する。
主な懸念の1つは、LLMが学習のアウトプットにより依存するにつれて生じる潜在的なフィードバックループである。
調査から得られた重要なポイントは、ユーザの専門知識の重要な役割と、LCMのアウトプットを信頼し、検証するための差別化アプローチの必要性である。
論文 参考訳(メタデータ) (2024-03-15T04:04:45Z) - MedKP: Medical Dialogue with Knowledge Enhancement and Clinical Pathway
Encoding [48.348511646407026]
本稿では,知識向上と臨床パスウェイ符号化フレームワークを用いた医療対話について紹介する。
このフレームワークは、医療知識グラフを介して外部知識増強モジュールと、医療機関および医師の行動を介して、内部臨床経路をコードする。
論文 参考訳(メタデータ) (2024-03-11T10:57:45Z) - Guiding Clinical Reasoning with Large Language Models via Knowledge Seeds [32.99251005719732]
臨床推論(英: Clinical reasoning)とは、医師が患者の評価と管理に用いている認知過程のことである。
本研究では,医学的知識によるLCMの強化を目的とした新しい枠組みであるICP(In-Context Padding)を提案する。
論文 参考訳(メタデータ) (2024-03-11T10:53:20Z) - Large Language Models Illuminate a Progressive Pathway to Artificial
Healthcare Assistant: A Review [16.008511195589925]
大規模言語モデル(LLM)は、人間のレベルの言語理解と推論を模倣する有望な能力を示している。
本稿では,医学におけるLSMの応用と意義について概説する。
論文 参考訳(メタデータ) (2023-11-03T13:51:36Z) - Don't Ignore Dual Logic Ability of LLMs while Privatizing: A
Data-Intensive Analysis in Medical Domain [19.46334739319516]
本研究では, LLMの二重論理能力が, 医療領域の民営化過程における影響について検討した。
以上の結果から,LLMに汎用ドメイン二重論理データを組み込むことによって,LLMの二重論理能力が向上するだけでなく,精度も向上することが示唆された。
論文 参考訳(メタデータ) (2023-09-08T08:20:46Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。