論文の概要: SmartML: Towards a Modeling Language for Smart Contracts
- arxiv url: http://arxiv.org/abs/2403.06622v1
- Date: Mon, 11 Mar 2024 11:27:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:24:37.159323
- Title: SmartML: Towards a Modeling Language for Smart Contracts
- Title(参考訳): SmartML: スマートコントラクトのためのモデリング言語を目指す
- Authors: Adele Veschetti, Richard Bubel, Reiner H\"ahnle
- Abstract要約: 本稿では,プラットフォームに依存しない,理解しやすいスマートコントラクトのモデリング言語であるSmartMLを提案する。
フォーマルなセマンティクスと型システムについて詳述し、セキュリティの脆弱性や攻撃に対処する上での役割に焦点を当てる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart contracts codify real-world transactions and automatically execute the
terms of the contract when predefined conditions are met. This paper proposes
SmartML, a modeling language for smart contracts that is platform independent
and easy to comprehend. We detail the formal semantics and the type system,
focusing on its role in addressing security vulnerabilities and attacks.
Through case studies we show how SmartML contributes to the prevention of
reentrancy attacks, illustrating its efficacy in reinforcing the reliability
and security of smart contracts within decentralized systems.
- Abstract(参考訳): smart contractsは現実世界のトランザクションを成文化し、事前定義された条件が満たされると自動的に契約条件を実行する。
本稿では,プラットフォームに依存しない,理解しやすいスマートコントラクトのモデリング言語であるSmartMLを提案する。
フォーマルなセマンティクスと型システムは、セキュリティの脆弱性や攻撃に対処する上での役割に焦点を当てています。
ケーススタディを通じて、分散システム内のスマートコントラクトの信頼性とセキュリティを強化する上で、SmartMLがレジリエンス攻撃の防止にどのように貢献しているかを示す。
関連論文リスト
- Adversarial Reasoning at Jailbreaking Time [49.70772424278124]
テスト時間計算による自動ジェイルブレイクに対する逆推論手法を開発した。
我々のアプローチは、LSMの脆弱性を理解するための新しいパラダイムを導入し、より堅牢で信頼性の高いAIシステムの開発の基礎を築いた。
論文 参考訳(メタデータ) (2025-02-03T18:59:01Z) - Leveraging Large Language Models and Machine Learning for Smart Contract Vulnerability Detection [0.0]
我々は、モデル性能を比較するために、機械学習アルゴリズムを訓練、テストし、タイプに応じてスマートコントラクトコードを分類する。
我々の研究は、機械学習と大規模言語モデルを組み合わせて、さまざまなスマートコントラクトの脆弱性を検出するリッチで解釈可能なフレームワークを提供します。
論文 参考訳(メタデータ) (2025-01-04T08:32:53Z) - SmartAgent: Chain-of-User-Thought for Embodied Personalized Agent in Cyber World [50.937342998351426]
COUT(Chain-of-User-Thought)は、新しい推論パラダイムである。
我々は、サイバー環境を認識し、パーソナライズされた要求を推論するエージェントフレームワークであるSmartAgentを紹介する。
我々の研究は、まずCOUTプロセスを定式化し、パーソナライズされたエージェント学習を具体化するための予備的な試みとして役立ちます。
論文 参考訳(メタデータ) (2024-12-10T12:40:35Z) - Smart-LLaMA: Two-Stage Post-Training of Large Language Models for Smart Contract Vulnerability Detection and Explanation [21.39496709865097]
既存のスマートコントラクトの脆弱性検出方法は3つの大きな問題に直面している。
データセットの十分な品質、詳細な説明と正確な脆弱性位置の欠如。
LLaMA言語モデルに基づく高度な検出手法であるSmart-LLaMAを提案する。
論文 参考訳(メタデータ) (2024-11-09T15:49:42Z) - LLM-SmartAudit: Advanced Smart Contract Vulnerability Detection [3.1409266162146467]
本稿では,スマートコントラクトの脆弱性を検出し解析する新しいフレームワークであるLLM-SmartAuditを紹介する。
LLM-SmartAuditは、マルチエージェントの会話アプローチを用いて、監査プロセスを強化するために、特殊なエージェントとの協調システムを採用している。
私たちのフレームワークは、従来のツールがこれまで見落としていた複雑なロジックの脆弱性を検出することができます。
論文 参考訳(メタデータ) (2024-10-12T06:24:21Z) - Compromising Embodied Agents with Contextual Backdoor Attacks [69.71630408822767]
大型言語モデル(LLM)は、エンボディドインテリジェンスの発展に変化をもたらした。
本稿では,このプロセスにおけるバックドアセキュリティの重大な脅威を明らかにする。
ほんの少しの文脈的デモンストレーションを毒殺しただけで、攻撃者はブラックボックスLDMの文脈的環境を隠蔽することができる。
論文 参考訳(メタデータ) (2024-08-06T01:20:12Z) - Performance-lossless Black-box Model Watermarking [69.22653003059031]
本稿では,モデル知的財産権を保護するために,ブランチバックドアベースのモデル透かしプロトコルを提案する。
さらに,プロトコルに対する潜在的な脅威を分析し,言語モデルに対するセキュアで実現可能な透かしインスタンスを提供する。
論文 参考訳(メタデータ) (2023-12-11T16:14:04Z) - Gradual Verification for Smart Contracts [0.4543820534430522]
Algosはスマートコントラクトを通じてセキュアなリソーストランザクションを実現する。
従来の検証技術は、包括的なセキュリティ保証の提供に不足している。
本稿では,段階的検証という段階的なアプローチを紹介する。
論文 参考訳(メタデータ) (2023-11-22T12:42:26Z) - Formally Verifying a Real World Smart Contract [52.30656867727018]
われわれは、Solidityの最新バージョンで書かれた現実世界のスマートコントラクトを正式に検証できるツールを検索する。
本稿では,最近のSolidityで書かれた実世界のスマートコントラクトを正式に検証できるツールについて紹介する。
論文 参考訳(メタデータ) (2023-07-05T14:30:21Z) - HyMo: Vulnerability Detection in Smart Contracts using a Novel
Multi-Modal Hybrid Model [1.16095700765361]
既存の分析技術は、多数のスマートコントラクトのセキュリティ欠陥を特定することができるが、専門家によって確立された厳格な基準に依存しすぎている。
マルチモーダルなハイブリッドディープラーニングモデルとしてHyMoを提案する。
ハイブリッドHyMoモデルでは,優れたスマートコントラクト脆弱性検出性能が得られた。
論文 参考訳(メタデータ) (2023-04-25T19:16:21Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。