論文の概要: On Unsupervised Prompt Learning for Classification with Black-box Language Models
- arxiv url: http://arxiv.org/abs/2410.03124v1
- Date: Fri, 4 Oct 2024 03:39:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:46:34.514510
- Title: On Unsupervised Prompt Learning for Classification with Black-box Language Models
- Title(参考訳): ブラックボックス言語モデルを用いた教師なしプロンプト学習について
- Authors: Zhen-Yu Zhang, Jiandong Zhang, Huaxiu Yao, Gang Niu, Masashi Sugiyama,
- Abstract要約: 大規模言語モデル(LLM)は、テキスト形式学習問題において顕著な成功を収めた。
LLMは、熟練した人間のアノテータよりも品質の高いデータセットをラベル付けすることができる。
本稿では,ブラックボックス LLM を用いた分類のための教師なしのプロンプト学習を提案する。
- 参考スコア(独自算出の注目度): 71.60563181678323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved impressive success in text-formatted learning problems, and most popular LLMs have been deployed in a black-box fashion. Meanwhile, fine-tuning is usually necessary for a specific downstream task to obtain better performance, and this functionality is provided by the owners of the black-box LLMs. To fine-tune a black-box LLM, labeled data are always required to adjust the model parameters. However, in many real-world applications, LLMs can label textual datasets with even better quality than skilled human annotators, motivating us to explore the possibility of fine-tuning black-box LLMs with unlabeled data. In this paper, we propose unsupervised prompt learning for classification with black-box LLMs, where the learning parameters are the prompt itself and the pseudo labels of unlabeled data. Specifically, the prompt is modeled as a sequence of discrete tokens, and every token has its own to-be-learned categorical distribution. On the other hand, for learning the pseudo labels, we are the first to consider the in-context learning (ICL) capabilities of LLMs: we first identify reliable pseudo-labeled data using the LLM, and then assign pseudo labels to other unlabeled data based on the prompt, allowing the pseudo-labeled data to serve as in-context demonstrations alongside the prompt. Those in-context demonstrations matter: previously, they are involved when the prompt is used for prediction while they are not involved when the prompt is trained; thus, taking them into account during training makes the prompt-learning and prompt-using stages more consistent. Experiments on benchmark datasets show the effectiveness of our proposed algorithm. After unsupervised prompt learning, we can use the pseudo-labeled dataset for further fine-tuning by the owners of the black-box LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)はテキスト形式の学習問題において顕著な成功を収めており、最も人気のあるLLMはブラックボックス方式で展開されている。
一方、特定のダウンストリームタスクがより良いパフォーマンスを得るためには、通常、微調整が必要であり、この機能はブラックボックスLLMのオーナーによって提供される。
ブラックボックスLSMを微調整するには、モデルパラメータを調整するためにラベル付きデータが必要である。
しかし、現実の多くのアプリケーションでは、LLMは熟練した人間のアノテーションよりも高品質なテキストデータセットをラベル付けすることができ、ラベルなしデータで微調整されたブラックボックスLSMの可能性を探る動機となった。
本稿では,学習パラメータがプロンプト自身とラベルなしデータの擬似ラベルであるブラックボックスLPMを用いた分類のための教師なしプロンプト学習を提案する。
具体的には、プロンプトは離散トークンの列としてモデル化され、各トークンは、それぞれが学習対象のカテゴリ分布を持つ。
一方、擬似ラベルを学習するには、まずLLMのテキスト内学習(ICL)機能について検討し、まずLLMを用いて信頼性の高い擬似ラベル付きデータを識別し、そのプロンプトに基づいて擬似ラベル付きデータを他の非ラベル付きデータに割り当てる。
以前は、プロンプトがトレーニング中に関与していないときに、プロンプトが予測に使用される場合に関係しているため、トレーニング中にそれらを考慮することで、プロンプト学習とプロンプト利用のステージはより一貫したものになる。
ベンチマークデータセットを用いた実験により,提案アルゴリズムの有効性が示された。
教師なしの素早い学習の後、擬似ラベル付きデータセットを使用して、ブラックボックスLLMの所有者によるさらなる微調整を行うことができる。
関連論文リスト
- Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
現実世界のNLPアプリケーションでは、Large Language Models (LLMs) は巨大なデータセットの広範なトレーニングのために、有望なソリューションを提供する。
LLKDは、教師と学生の両方の信号を組み込んだ適応的なサンプル選択法である。
総合的な実験により,LLKDは高いデータ効率で,様々なデータセットで優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-11-12T18:57:59Z) - Zero-to-Strong Generalization: Eliciting Strong Capabilities of Large Language Models Iteratively without Gold Labels [75.77877889764073]
大規模言語モデル(LLM)は,ゴールドラベルを用いた教師付き微調整やテキスト内学習を通じて,顕著な性能を示した。
本研究では,ラベルのないデータのみを利用することで,強力なモデル機能を実現することができるかどうかを考察する。
ゼロ・ツー・ストロング一般化と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2024-09-19T02:59:44Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Tuning Vision-Language Models with Candidate Labels by Prompt Alignment [8.013652039026264]
視覚言語モデル(VLM)は、画像テキストペアの大規模なトレーニングデータセットから高品質な表現を学習することができる。
プロンプト学習は、下流タスクに適応するためにVLMを微調整する一般的なアプローチである。
本稿では,学習過程を候補ラベルでガイドする枠組みを提案する。
論文 参考訳(メタデータ) (2024-07-10T13:19:31Z) - Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data [21.912611415307644]
大規模言語モデル (LLM) は様々なタスクに適用できるが、データ汚染と記憶の重大な問題はしばしば誇張される。
本稿では, 条件分布モデリングの統計的テストや, 暗記を識別する4つのテストなど, 汚染度を評価するための様々な手法を紹介する。
論文 参考訳(メタデータ) (2024-03-11T12:07:13Z) - Learning to Prompt with Text Only Supervision for Vision-Language Models [107.282881515667]
メソッドの1つのブランチは、視覚情報を使用してプロンプトを学習することでCLIPに適応する。
別のアプローチでは、大規模な言語モデルからクラス記述を生成することで、トレーニング不要の手法を利用する。
そこで本研究では,テキストデータのみを用いてプロンプトを学習することで,両ストリームの強みを組み合わせることを提案する。
論文 参考訳(メタデータ) (2024-01-04T18:59:49Z) - Take One Step at a Time to Know Incremental Utility of Demonstration: An Analysis on Reranking for Few-Shot In-Context Learning [23.932500424117244]
In-Context Learning (ICL)は大規模言語モデル(LLM)の創発的能力である
従来の研究では、ラベルとしてLLMの出力を使用することが、デモを選択するためのトレーニングモデルに有効であることが示されている。
本稿では,LLMの出力確率に着目して,異なるユーティリティ関数の解析を行う。
論文 参考訳(メタデータ) (2023-11-16T07:03:54Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
本稿では,大規模な言語モデルをアノテータとして利用し,それをアクティブな学習ループに配置して,アノテートを効率的に行うLLMaAAを提案する。
我々は、エンティティ認識と関係抽出という、2つの古典的NLPタスクの実験と分析を行う。
LLMaAAでは、LLM生成ラベルからトレーニングされたタスク固有のモデルが、数百の注釈付きサンプルで教師より優れている。
論文 参考訳(メタデータ) (2023-10-30T14:54:15Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - Data Race Detection Using Large Language Models [1.0013600887991827]
大規模言語モデル(LLM)は、高性能コンピューティングプログラムの分析と最適化を容易にする代替戦略である。
本稿では,工学的手法と微調整的手法を併用した,LLMに基づく新しいデータ競合検出手法を提案する。
論文 参考訳(メタデータ) (2023-08-15T00:08:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。