Generalising Multi-Agent Cooperation through Task-Agnostic Communication
- URL: http://arxiv.org/abs/2403.06750v1
- Date: Mon, 11 Mar 2024 14:20:13 GMT
- Title: Generalising Multi-Agent Cooperation through Task-Agnostic Communication
- Authors: Dulhan Jayalath, Steven Morad, Amanda Prorok
- Abstract summary: Existing communication methods for multi-agent reinforcement learning (MARL) in cooperative multi-robot problems are almost exclusively task-specific, training new communication strategies for each unique task.
We address this inefficiency by introducing a communication strategy applicable to any task within a given environment.
Our objective is to learn a fixed-size latent Markov state from a variable number of agent observations.
Our method enables seamless adaptation to novel tasks without fine-tuning the communication strategy, gracefully supports scaling to more agents than present during training, and detects out-of-distribution events in an environment.
- Score: 7.380444448047908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing communication methods for multi-agent reinforcement learning (MARL)
in cooperative multi-robot problems are almost exclusively task-specific,
training new communication strategies for each unique task. We address this
inefficiency by introducing a communication strategy applicable to any task
within a given environment. We pre-train the communication strategy without
task-specific reward guidance in a self-supervised manner using a set
autoencoder. Our objective is to learn a fixed-size latent Markov state from a
variable number of agent observations. Under mild assumptions, we prove that
policies using our latent representations are guaranteed to converge, and upper
bound the value error introduced by our Markov state approximation. Our method
enables seamless adaptation to novel tasks without fine-tuning the
communication strategy, gracefully supports scaling to more agents than present
during training, and detects out-of-distribution events in an environment.
Empirical results on diverse MARL scenarios validate the effectiveness of our
approach, surpassing task-specific communication strategies in unseen tasks.
Our implementation of this work is available at
https://github.com/proroklab/task-agnostic-comms.
Related papers
- Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Centralized Training with Hybrid Execution in Multi-Agent Reinforcement
Learning [7.163485179361718]
We introduce hybrid execution in multi-agent reinforcement learning (MARL)
MARL is a new paradigm in which agents aim to successfully complete cooperative tasks with arbitrary communication levels at execution time.
We contribute MARO, an approach that makes use of an auto-regressive predictive model, trained in a centralized manner, to estimate missing agents' observations.
arXiv Detail & Related papers (2022-10-12T14:58:32Z) - Learning Action Translator for Meta Reinforcement Learning on
Sparse-Reward Tasks [56.63855534940827]
This work introduces a novel objective function to learn an action translator among training tasks.
We theoretically verify that the value of the transferred policy with the action translator can be close to the value of the source policy.
We propose to combine the action translator with context-based meta-RL algorithms for better data collection and more efficient exploration during meta-training.
arXiv Detail & Related papers (2022-07-19T04:58:06Z) - Set-based Meta-Interpolation for Few-Task Meta-Learning [79.4236527774689]
We propose a novel domain-agnostic task augmentation method, Meta-Interpolation, to densify the meta-training task distribution.
We empirically validate the efficacy of Meta-Interpolation on eight datasets spanning across various domains.
arXiv Detail & Related papers (2022-05-20T06:53:03Z) - FCMNet: Full Communication Memory Net for Team-Level Cooperation in
Multi-Agent Systems [15.631744703803806]
We introduce FCMNet, a reinforcement learning based approach that allows agents to simultaneously learn an effective multi-hop communications protocol.
Using a simple multi-hop topology, we endow each agent with the ability to receive information sequentially encoded by every other agent at each time step.
FCMNet outperforms state-of-the-art communication-based reinforcement learning methods in all StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2022-01-28T09:12:01Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - The Emergence of Adversarial Communication in Multi-Agent Reinforcement
Learning [6.18778092044887]
Many real-world problems require the coordination of multiple autonomous agents.
Recent work has shown the promise of Graph Neural Networks (GNNs) to learn explicit communication strategies that enable complex multi-agent coordination.
We show how a single self-interested agent is capable of learning highly manipulative communication strategies that allows it to significantly outperform a cooperative team of agents.
arXiv Detail & Related papers (2020-08-06T12:48:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.