FCMNet: Full Communication Memory Net for Team-Level Cooperation in
Multi-Agent Systems
- URL: http://arxiv.org/abs/2201.11994v2
- Date: Mon, 31 Jan 2022 08:01:14 GMT
- Title: FCMNet: Full Communication Memory Net for Team-Level Cooperation in
Multi-Agent Systems
- Authors: Yutong Wang and Guillaume Sartoretti
- Abstract summary: We introduce FCMNet, a reinforcement learning based approach that allows agents to simultaneously learn an effective multi-hop communications protocol.
Using a simple multi-hop topology, we endow each agent with the ability to receive information sequentially encoded by every other agent at each time step.
FCMNet outperforms state-of-the-art communication-based reinforcement learning methods in all StarCraft II micromanagement tasks.
- Score: 15.631744703803806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decentralized cooperation in partially-observable multi-agent systems
requires effective communications among agents. To support this effort, this
work focuses on the class of problems where global communications are available
but may be unreliable, thus precluding differentiable communication learning
methods. We introduce FCMNet, a reinforcement learning based approach that
allows agents to simultaneously learn a) an effective multi-hop communications
protocol and b) a common, decentralized policy that enables team-level
decision-making. Specifically, our proposed method utilizes the hidden states
of multiple directional recurrent neural networks as communication messages
among agents. Using a simple multi-hop topology, we endow each agent with the
ability to receive information sequentially encoded by every other agent at
each time step, leading to improved global cooperation. We demonstrate FCMNet
on a challenging set of StarCraft II micromanagement tasks with shared rewards,
as well as a collaborative multi-agent pathfinding task with individual
rewards. There, our comparison results show that FCMNet outperforms
state-of-the-art communication-based reinforcement learning methods in all
StarCraft II micromanagement tasks, and value decomposition methods in certain
tasks. We further investigate the robustness of FCMNet under realistic
communication disturbances, such as random message loss or binarized messages
(i.e., non-differentiable communication channels), to showcase FMCNet's
potential applicability to robotic tasks under a variety of real-world
conditions.
Related papers
- T2MAC: Targeted and Trusted Multi-Agent Communication through Selective
Engagement and Evidence-Driven Integration [15.91335141803629]
We propose Targeted and Trusted Multi-Agent Communication (T2MAC) to help agents learn selective engagement and evidence-driven integration.
T2MAC enables agents to craft individualized messages, pinpoint ideal communication windows, and engage with reliable partners.
We evaluate our method on a diverse set of cooperative multi-agent tasks, with varying difficulties, involving different scales.
arXiv Detail & Related papers (2024-01-19T18:00:33Z) - Will 6G be Semantic Communications? Opportunities and Challenges from
Task Oriented and Secure Communications to Integrated Sensing [49.83882366499547]
This paper explores opportunities and challenges of task (goal)-oriented and semantic communications for next-generation (NextG) networks through the integration of multi-task learning.
We employ deep neural networks representing a dedicated encoder at the transmitter and multiple task-specific decoders at the receiver.
We scrutinize potential vulnerabilities stemming from adversarial attacks during both training and testing phases.
arXiv Detail & Related papers (2024-01-03T04:01:20Z) - Multi-Agent Reinforcement Learning Based on Representational
Communication for Large-Scale Traffic Signal Control [13.844458247041711]
Traffic signal control (TSC) is a challenging problem within intelligent transportation systems.
We propose a communication-based MARL framework for large-scale TSC.
Our framework allows each agent to learn a communication policy that dictates "which" part of the message is sent "to whom"
arXiv Detail & Related papers (2023-10-03T21:06:51Z) - Multi-Receiver Task-Oriented Communications via Multi-Task Deep Learning [49.83882366499547]
This paper studies task-oriented, otherwise known as goal-oriented, communications in a setting where a transmitter communicates with multiple receivers.
A multi-task deep learning approach is presented for joint optimization of completing multiple tasks and communicating with multiple receivers.
arXiv Detail & Related papers (2023-08-14T01:34:34Z) - Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - Minimizing Communication while Maximizing Performance in Multi-Agent
Reinforcement Learning [5.612141846711729]
Inter-agent communication can significantly increase performance in multi-agent tasks that require co-ordination.
In real-world applications, where communication may be limited by system constraints like bandwidth, power and network capacity, one might need to reduce the number of messages that are sent.
We show that we can reduce communication by 75% with no loss of performance.
arXiv Detail & Related papers (2021-06-15T23:13:51Z) - Learning Connectivity for Data Distribution in Robot Teams [96.39864514115136]
We propose a task-agnostic, decentralized, low-latency method for data distribution in ad-hoc networks using Graph Neural Networks (GNN)
Our approach enables multi-agent algorithms based on global state information to function by ensuring it is available at each robot.
We train the distributed GNN communication policies via reinforcement learning using the average Age of Information as the reward function and show that it improves training stability compared to task-specific reward functions.
arXiv Detail & Related papers (2021-03-08T21:48:55Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - Learning Individually Inferred Communication for Multi-Agent Cooperation [37.56115000150748]
We propose Individually Inferred Communication (I2C) to enable agents to learn a prior for agent-agent communication.
The prior knowledge is learned via causal inference and realized by a feed-forward neural network.
I2C can not only reduce communication overhead but also improve the performance in a variety of multi-agent cooperative scenarios.
arXiv Detail & Related papers (2020-06-11T14:07:57Z) - Learning Structured Communication for Multi-agent Reinforcement Learning [104.64584573546524]
This work explores the large-scale multi-agent communication mechanism under a multi-agent reinforcement learning (MARL) setting.
We propose a novel framework termed as Learning Structured Communication (LSC) by using a more flexible and efficient communication topology.
arXiv Detail & Related papers (2020-02-11T07:19:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.